首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lin  Zihan  Pan  Dong  Hu  Tianyu  Liu  Ziping  Su  Xingguang 《Mikrochimica acta》2015,182(11):1933-1939

We describe a near-infrared (NIR) fluorescent thrombin assay using a thrombin-binding aptamer (TBA) and Zn(II)-activated CuInS2 quantum dots (Q-dots). The fluorescence of Zn(II)-activated Q-dots is quenched by the TBA via photoinduced electron transfer, but if thrombin is added, it will bind to TBA to form G-quadruplexes and the Q-dots are released. As a result, the fluorescence intensity of the system is restored. This effect was exploited to design an assay for thrombin whose calibration plot, under optimum conditions, is linear in the 0.034 to 102 nmol L−1 concentration range, with a 12 pmol L−1 detection limit. The method is fairly simple, fast, and due to its picomolar detection limits holds great potential in the diagnosis of diseases associated with coagulation abnormalities and certain kinds of cancer.

We developed a simple near-infrared fluorescence assay using thrombin binding aptamer (TBA) and Zn(II)-activated CuInS2 quantum dots for the highly selective and sensitive detection of thrombin.

  相似文献   

2.
Cui  Haochen  Wu  Jayne  Eda  Shigetoshi  Chen  Jiangang  Chen  Wei  Zheng  Lei 《Mikrochimica acta》2015,182(13):2361-2367

A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL − 1) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples.

A. AC electrokinetics effect plays a vital role in BPA detection by introducing microfluidic movement to accelerate the molecular transport to the electrode surface.

B. The ACEK capacitive aptasensor has a limit of detection as low as 10 fM (2.8 fg ⋅ mL − 1) with a 20-s response time.

  相似文献   

3.
Mu  Juanjuan  Feng  Qingyue  Chen  Xiudan  Li  Jing  Wang  Huili  Li  Mei-Jin 《Mikrochimica acta》2015,182(15):2561-2566

We describe a nanosensor for sensitive and selective detection of cyanide anions. The Ir(III) chlorine bridge complex [Ir(C^N)2-m-Cl]2 (Irpq, where pq is C^N = 2-phenyl quinoline) was doped into silica nanoparticles (SiNPs) with a typical size of about 30 nm. The intensity of the yellow emission of the doped SiNPs (under 410 nm exCitation) was strongly enhanced on addition of cyanide ions due to the replacement of chloride by cyanide. The method can detect cyanide ions in the 12.5 to 113 μM concentration range, and the limit of detection is 1.66 μM (at an S/N ratio of 3). The method is simple, sensitive and fast, and this makes it a candidate probe for the fast optical determination of cyanide.

The nanosensor is exploiting the cyanide-induced enhancement of the fluorescence of silica nanoparticles doped with an Ir(III) complex which is the result of the replacement of chloride by cyanide.

  相似文献   

4.
Zheng  Dongyun  Liu  Xiaojun  Zhu  Shanying  Cao  Huimin  Chen  Yaguang  Hu  Shengshui 《Mikrochimica acta》2015,182(15):2403-2410

We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes.

NO electrochemical sensor based on CTAB-Nafion/CNFPME was fabricated through a simple method and applied to detect NO released from mouse hepatocytes successfully.

  相似文献   

5.
Pan  Feng  Mao  Jie  Chen  Qiang  Wang  Pengbo 《Mikrochimica acta》2013,180(15):1471-1477

Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.

  相似文献   

6.
Qiu  Huazhang  Liu  Zong&#;en  Huang  Zhengjun  Chen  Min  Cai  Xiaohui  Weng  Shaohuang  Lin  Xinhua 《Mikrochimica acta》2015,182(15):2387-2393

We describe a turn-off fluorescence-based strategy for the detection of ATP by making use of aptamer-triggered dsDNA concatamers. This sensitive and easily controlled method is based on consecutive hybridization induced by ATP aptamers and their sectional complementary DNAs to form dsDNA concatamers. The intercalator SYBR Green I (SGI) was employed as a fluorescent probe. In the absence of ATP, the probe produces a strong signal. However, on addition of ATP, the binding of aptamer and ATP cause the concatamers to collapse and to release SGI whose fluorescence then is quenched. The effect was exploited to design a selective ATP assay by relating the decrease in fluorescence to the ATP concentration. A lower detection limit of 6.1 μM and a linear response in the 0 to 5000 μM concentration range was accomplished. The strategy was applied to cellular ATP assays, and the results obtained by this strategy and by the gold standard method are in good agreement. The method is sensitive, simple and cost efficient, and hence is promising in terms of future applications to determine ATP in cellular and other systems.

A turn-off fluorescence-based strategy for the selective detection of ATP by using aptamer-triggered dsDNA concatamers.

  相似文献   

7.
Sun  Dong  Xu  Caiqun  Long  Jianghua  Ge  Teng 《Mikrochimica acta》2015,182(15):2601-2606

This article describes an electrochemical sensor for the dye additive Sunset Yellow (SY). It consists of a carbon paste electrode modified with nanostructured resorcinol-formaldehyde (RF) resin. The RF resin warrants strong signal enhancement and a strongly increased oxidation peak currents of SY at 0.66 V (vs. SCE). The effects of pH value, amount of RF polymer, accumulation potential and time were optimized. The sensor has a linear response to SY in the 0.3 to 125 nM concentration range, and the limit of detection is 0.09 nM after a 2-min accumulation time. The electrode was applied to the analysis of samples of wastewater and drinks, and the results are consistent with those obtained by HPLC.

Nanostructured resorcinol-formaldehyde (RF) resin was prepared and used as a material for electrochemical determination of Sunset Yellow.

  相似文献   

8.
Lee  Mei-Hwa  Thomas  James L.  Chen  Yun-Chao  Chin  Wei-Ti  Lin  Hung-Yin 《Mikrochimica acta》2013,180(15):1393-1399

The replacement of antibodies by molecularly imprinted polymers (MIPs) has been investigated for many decades. However, indirect protocols (including natural primary and secondary antibodies) are still utilized to evaluate the ability of MIP thin films to recognize target molecules. MIPs can be prepared as either a thin film or as particles, and cavities that are complementary to the template can be generated on their surfaces. We have prepared thin film MIPs and particle MIPs prepared by solvent evaporation and phase inversion, respectively, from solutions of poly(ethylene-co-vinyl alcohol) (pEVAL) in the presence of the target analytes amylase, lysozyme, and lipase. These were first adsorbed on MIP thin films and by MIP particles that contain fluorescent quantum dots. Sandwich fluoroimmunoassays were then conducted to quantify them in MIP-coated 96-well microplates. The method was applied to determine amylase in saliva, and results were compared with a commercial analytical system.

  相似文献   

9.
Lv  Hua  Li  Shuang  Liu  Yumin  Wang  Gongke  Li  Xiang  Lu  Yan  Wang  Jianji 《Mikrochimica acta》2015,182(15):2513-2520

We describe a reversible fluorescent DNA–based INHIBIT logic gate for the determination of silver(I) and iodide ions using graphene oxide (GO) as a signal transducer and Ag(I) and iodide as mechanical activators. The basic performance, optimized conditions, sensitivity and selectivity of the logic gate were investigated and revealed that the method is highly sensitive and selective over potentially interfering ions. The limits of detection for Ag(I) and iodide are 10 nM and 50 nM, respectively. This logic gate was successfully applied to the determination of Ag(I) and iodide in (spiked) tap water and river water. It was also used for the determination of iodide in human urine samples with satisfactory results. Compared to other methods, this INHIBIT logic gate is simple in design and has small background interference.

A simple and reversible fluorescent DNA-based INHIBIT logic gate is designed by using graphene oxide as a signal transducer and silver ions and iodide as mechanical activators.

  相似文献   

10.
Chen  Lijian  Wang  Nan  Wang  Xindong  Ai  Shiyun 《Mikrochimica acta》2013,180(15):1517-1522

Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM.

Pt-NPs were synthesized using BSA-directed one-pot reduction and BSA/Pt-NPs composite can effectively catalyze the oxidation of TMB producing blue solution in the presence of H2O2.

  相似文献   

11.

We report on the first application of terahertz metamaterials acting as transducers for chemical sensors based on conducting polymers. In our feasibility study aimed at sensing of gaseous hydrochloric and ammonia, a two-dimensional sensor metamaterial consisting of an array of split-ring resonators on the surface of undoped silicon wafer was prepared. The surface of the resonator was coated with a 150-μm layer of polyaniline. Binding of hydrogen chloride to polyaniline leads to distinct changes in the resonance frequency of the metamaterial. Measurements can be performed both in the reflection and transmission mode. A numerical simulation of the response revealed an increase of both the real and the imaginary components of the dielectric function of the polyaniline film. These changes are attributed to the transition from emaraldine base to emeraldine salt. The results demonstrate a new approach for formation of highly sensitive transducers for chemical sensors.

  相似文献   

12.
Dewi  Melissa R.  Laufersky  Geoffry  Nann  Thomas 《Mikrochimica acta》2015,182(13):2293-2298

Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.

Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.

  相似文献   

13.
Zhao  Hengzhi  Dong  Jingjing  Zhou  Fulin  Li  Baoxin 《Mikrochimica acta》2015,182(15):2495-2502

We describe a simple and homogenous fluorimetric method for sensitive determination of DNA. It is based on target-triggered isothermal cycling and a cascade exponential amplification reaction that generates a large amount of a G-quadruplex. This results in strong fluorescence signal when using thioflavin T as a G-quadruplex-specific light-up fluorescent probe. Tedious handling after amplification is widely eliminated by the addition of thioflavin T. No other exogenous reagent is required. This detection platform is inexpensive and rapid, and displays high sensitivity for target DNA, with a detection limit as low as 91 pM.

The addition of target DNA can trigger the isothermal exponential amplification reaction to generate a large amount of G-quadruplex sequence oligonucleotides and then employ thioflavin T (Th T) (a G-quadruplex-specific light-up dye) as signal output for sensitive DNA detection.

  相似文献   

14.
Tan  Lei  Chen  Kuncai  Huang  Cong  Peng  Rongfei  Luo  Xiaoyan  Yang  Rong  Cheng  Yanfang  Tang  Youwen 《Mikrochimica acta》2015,182(15):2615-2622

This article describes a fluorescent molecularly imprinted polymer (MIP) capable of selective fluorescent turn-on recognition of the tumor biomarker α-fetoprotein. The technique is making use of amino-modified Mn-doped ZnS quantum dots (QDs) as solid supports, 4-vinylphenylboronic acid and methyl methacrylate as the functional monomers, γ-methacryloxypropyl trimethoxysilane as the grafting agent, and α-fetoprotein as a template. A graft imprint is created on the surface of the QDs. The functional monomers are shown to play an important role in the formation of the binding sites and in preventing nonspecific protein binding. The resulting MIP-QDs display a good linear response to α-fetoprotein in the 50 ng · L−1 to 10 μg · L−1 concentration range, and the limit of detection is 48 ng · L−1. In our perception, the method has a wide scope in that it may be adapted to various other glycoproteins.

Schematic illustration of the synthesis of the MIP-QDs composites

  相似文献   

15.

We are describing immunochromatographic test strips with smart phone-based fluorescence readout. They are intended for use in the detection of the foodborne bacterial pathogens Salmonella spp. and Escherichia coli O157. Silica nanoparticles (SiNPs) were doped with FITC and Ru(bpy), conjugated to the respective antibodies, and then used in a conventional lateral flow immunoassay (LFIA). Fluorescence was recorded by inserting the nitrocellulose strip into a smart phone-based fluorimeter consisting of a light weight (40 g) optical module containing an LED light source, a fluorescence filter set and a lens attached to the integrated camera of the cell phone in order to acquire high-resolution fluorescence images. The images were analysed by exploiting the quick image processing application of the cell phone and enable the detection of pathogens within few minutes. This LFIA is capable of detecting pathogens in concentrations as low as 105 cfu mL−1 directly from test samples without pre-enrichment. The detection is one order of magnitude better compared to gold nanoparticle-based LFIAs under similar condition. The successful combination of fluorescent nanoparticle-based pathogen detection by LFIAs with a smart phone-based detection platform has resulted in a portable device with improved diagnosis features and having potential application in diagnostics and environmental monitoring.

The successful combination of fluorescent nanoparticle-based pathogen detection by lateral flow immunoassay with a smart phone-based detection platform has resulted in a portable device that enables rapid and reliable bacterial detection holding large potential in diagnostics and environmental monitoring

  相似文献   

16.
Chu  Chengchao  Li  Long  Li  Shuai  Li  Meng  Ge  Shenguang  Yu  Jinghua  Yan  Mei  Song  Xianrang 《Mikrochimica acta》2013,180(15):1509-1516

We report on an ultrasensitive fluorescence immunoassay for human chorionic gonadotrophin antigen (hCG). It is based on the use of silica nanoparticles coated with a copolymer (prepared from a fluorene, a phenylenediamine, and divinylbenzene; PF@SiO2) that acts as a fluorescent label for the secondary monoclonal antibody to β-hCG antigen. In parallel, Fe3O4 nanoparticles were coated with polyaniline, and these magnetic particles (Fe3O4@PANI) served as a solid support for the primary monoclonal antibody to β-hCG antigen. The PF@SiO2 exhibited strong fluorescence and good dispersibility in water. A fluorescence sandwich immunoassay was developed that enables hCG concentrations to be determined in the 0.01–100 ng·mL−1 concentration range, with a detection limit of 3 pg·mL−1.

Fluorescence detection of prepared immune reagent nano-composites using the fluorescence cell

  相似文献   

17.
Li  Lu  Fan  Limei  Dai  Yunlong  Kan  Xianwen 《Mikrochimica acta》2015,182(15):2477-2483

A molecularly imprinted polymer (MIP) was prepared by self-polymerization of dopamine in the presence of bovine hemoglobin (BHb) and then deposited on the surface of an electrode modified with gold nanoparticles (AuNPs). Scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry were employed to characterize the modified electrode using the hexacyanoferrate redox system as an electroactive probe. The effects of BHb concentration, dopamine concentration, and polymerization time were optimized. Under optimized conditions, the modified electrode selectively recognizes BHb even in the presence of other proteins. The peak current for hexacyanoferrate, typically measured at + 0.17 V (vs. SCE), depends on the concentration of BHb in the 1.0 × 10−11 to 1.0 × 10−2 mg mL−1 range. Due to the ease of preparation and tight adherence of polydopamine to various support materials, the present strategy conceivably also provides a platform for the recognition and detection of other proteins.

Gold nanoparticles and molecularly imprinted self-polymerization dopamine were modified on gold electrode surface to recognize and determine bovine hemoglobin. Under the optimized conditions, the modified electrode showed specific adsorption, selective recognition, and sensitive detection of bovine hemoglobin.

  相似文献   

18.
Liu  Guangyang  Yang  Xin  Li  Tengfei  Yu  Hailong  Du  Xinwei  She  Yongxin  Wang  Jing  Wang  Shanshan  Jin  Fen  Jin  Maojun  Shao  Hua  Zheng  Lufei  Zhang  Yanxin  Zhou  Pan 《Mikrochimica acta》2015,182(11):1983-1989

We report on a method for the determination of the herbicide atrazine in tap water samples using melamine-modified gold nanoparticles (Mel-AuNPs). If a solution containing atrazine is added to a solution of such NPs, a color change occurs from wine-red to blue. This is due to a transition from monodisperse to aggregated Mel-AuNPs and caused by strong hydrogen bonding between atrazine and melamine. The color change can be monitored by a UV–vis spectrophotometer or with bare eyes. The ratio of the absorbances at 640 and 523 nm is linearly related to the logarithm of the atrazine concentration in the 0.165 to 16.5 μM range, and (with different slope) in the 16.5 μM to 330 μM range. The detection limit of atrazine is as low as 16.5 nM (S/N = 3). The method was successfully applied to the determination of atrazine in spiked tap water and gave recoveries that ranged from 72.5 % to 102.3 %.

  相似文献   

19.
Yang  Si  Jiang  Zhongyao  Chen  Zhenzhen  Tong  Lili  Lu  Jun  Wang  Jiahui 《Mikrochimica acta》2015,182(11):1911-1916

Gold nanoclusters (AuNCs) stabilized with bovine serum albumin were utilized as a fluorescent probe for ferrous ion. The detection scheme is based on the quenching of the fluorescence of the modified AuNCs by hydroxyl radical (•OH) that is generated in the Fenton reaction between Fe(II) and H2O2. Fe(II) can be quantified in the 0.08 to 100 μM concentration range, and the limit of detection is as low as 24 nM. The method also displays good accuracy and high sensitivity when employed to the determination of Fe(II) in rat cerebrospinal fluids (CSFs). When applied to CSFs of a rat model of Alzheimer’s disease, it revealed enhanced levels of Fe(II) compared to a control, thereby showing the important physiological role of iron(II) in this disease.

BSA-stabilized gold nanoclusters (BSA-AuNCs) were utilized for the determination of ferrous ion in rat cerebrospinal fluids. The method is based on the quenching of the fluorescence by hydroxyl radical (•OH) which is generated in the Fenton reaction between Fe(II) and H2O2.

  相似文献   

20.
Liu  Changbin  Lu  Chunxia  Tang  Zonggui  Chen  Xia  Wang  Guohong  Sun  Fengxia 《Mikrochimica acta》2015,182(15):2567-2575

This work describes a method for the simultaneous detection of oxytetracycline (OTC) and kanamycin (KMY) using aptamers acting as both recognition and separation elements, and complementary oligonucleotides labeled with a green emitting fluorophore (carboxyfluorescein, FAM) and a yellow emitting fluorophore (carboxy-X-rhodamine, ROX), respectively, as signal labels. An OTC aptamer and a KMY aptamer were immobilized on the surface of magnetic nanoparticles (MNPs) via avidin-biotin chemistry. The aptamers preferentially bind their respective targets and thereby cause the upconcentration of analytes. However, in their absence they bind fluorescently-tagged complementary oligonucleotide later added to the reaction system. This cause the NPs to become fluorescent, with emission peaks located at 520 and 608 nm, respectively. The effects of the concentration of avidin, aptamer, complementary oligonucleotide, incubation temperature and incubation time were optimized. Under the optimal conditions, linear relationships were obtained in the range of 1–50 ng∙mL−1 for OTC and KMY, with limits of detection of 0.85 ng∙mL−1 and 0.92 ng∙mL−1, respectively. The method was applied to the analysis of pork, milk, and honey samples spiked with OTC and MKY. Recoveries ranged from 76.5 to 94.7 % and 77.8 to 93.1 %, respectively, and the relative standard deviation was <10.0 %.

This work describes an assay for the simultaneous detection of oxytetracycline and kanamycin using aptamer-modified as both recognition and separation elements, and complementary oligonucleotide labeled with FAM and ROX, respectively, as signal labels. The developed method possesses high sensitivity and selectivity, and short analysis time.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号