首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Co-modified Ce0.5Zr0.5O2 catalysts with different concentrations of Co (mass %: 0, 2, 4, 6, 8, 10) was investigated for diesel soot combustion. Ce0.5Zr0.5O2 was prepared using the coprecipitation method and Co was loaded onto the oxide using the incipient wetness impregnation method. The activities of the catalysts were evaluated by thermogravimetric (TG) analysis and temperature-programmed oxidation (TPO) experiments. The results showed the soot combustion activities of the catalysts to be effectively improved by the addition of Co, 6 % Co/Ce0.5Zr0.5O2 and that the 8 % Co/Ce0.5Zr0.5O2 catalysts exhibited the best catalytic performance in terms of lower soot ignition temperature (Ti at 349°C) and maximal soot oxidation rate temperature (Tm at 358°C). The reasons for the improved activity were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These results revealed that the presence of Co could lower the reduction temperature due to the synergistic effect between Co and Ce, thereby improving the activity of the catalysts in soot combustion. The 6 % Co catalyst exhibited the best catalytic performance, which could be attributed to the greater amounts of Co3+ and surface oxygen species on the catalyst.  相似文献   

2.
The effect the means of synthesis have on the texture, phase composition, redox properties, and catalytic activity of binary oxide systems with the composition Ce0.5Zr0.5O2 are studied. The obtained samples are characterized via BET, SEM, DTA, XRD, and Raman spectroscopy. A comparative analysis is performed of the physicochemical properties of biomorphic systems Ce0.5Zr0.5O2 obtained using wood sawdust and cellulose as templates and the properties of binary oxides of the same composition obtained by template-free means. The catalytic properties of the obtained oxide systems Ce0.5Zr0.5O2 are studied in the reaction of carbon black oxidation. It is shown that the texture of the oxide depends on the means of synthesis. When biotemplates are used, fragile porous systems form from thin binary oxide plates containing micro-, meso-, and macropores. Oxide obtained via coprecipitation consists of dense agglomerates with pores around 30 Å in size. In supercritical water, nanoparticles of metal oxide form that are loosely agglomerated. The intermediate spaces between them act as pores more than 100 Å in size. A system of single-phase pseudocubic modification is obtained using a cellulose template. The crystal lattices of all the obtained systems contain a great many defects. It is shown that the system prepared via synthesis in supercritical water has the best oxygen-exchange properties. A comparative analysis is performed of the effect the physicochemical properties of the samples have on their activity in the catalytic oxidation of carbon black.  相似文献   

3.
It was established by X-ray diffraction, TPR, and EPR that microemulsion (m.e.) synthesis yields the binary oxides ZrO2(m.e.) and CeO2(m.e.) and the mixed oxide Zr0.5Ce0.5O2(m.e.) in the form of a tetragonal, cubic, and pseudocubic phase, respectively, having crystallite sizes of 5–6 nm. The bond energy of surface oxygen in the (m.e.) samples is lower than in their analogues prepared by pyrolysis. Hydrogen oxidation on the oxides under study occurs at higher temperatures than CO oxidation. ZrO2(m.e.) and CeO2(m.e.) are active in O2 formation during NO + O2 adsorption, while CeO2 is active during CO + O2 adsorption, too. However, its amount here is one-half to one-third its amount in the pyrolysis-prepared samples, signifying a reduced number of active sites, which are Zr4+ and Ce4+ coordinatively unsaturated cations and Me4+-O2− pairs. O2 radical anions are stabilized in the coordination sphere of Zr4+ coordinatively unsaturated cations via ionic bonding, and in the sphere of Ce4+ cations, via covalent bonding. Ionic bonds are stronger than ionic-covalent bonds and do not depend on the ZrO2 phase composition. Zr0.5Ce0.5O2 is inactive in these reactions because of the strong interaction of Zr and Ce cations. It is suggested that Ce(4 + β)+ coordinatively unsaturated cations exist on its surface, and their acid strength is lower than that of Zr4+ and Ce4+ cations in ZrO2 and CeO2, according to the order ZrO2 > CeO2 ≥ Zr0.5Ce0.5O2. Neither TPR nor adsorption of probe molecules revealed Zr cations on the surface of the mixed oxide.  相似文献   

4.
Carbon dioxide reforming (CDR) of methane to synthesis gas over supported nickel catalysts has been reviewed. The present review mainly focuses on the advantage of ceria based nickel catalysts for the CDR of methane. Nickel catalysts supported on ceria–zirconia showed the highest activity for CDR than nickel supported on other oxides such as zirconia, ceria and alumina. The addition of zirconia to ceria enhances the catalytic activity as well as the catalyst stability. The catalytic performance also depends on the crystal structure of Ni–Ce–ZrO2. For example, nickel catalysts co-precipitated with Ce0.8Zr0.2O2 having cubic phase gave synthesis gas with CH4 conversion more than 97% at 800 °C and the activity was maintained for 100 h during the reaction. On the contrary, Ni–Ce–ZrO2 having tetragonal phase (Ce0.8Zr0.2O2) or mixed oxide phase (Ce0.5Zr0.5O2) deactivated during the reaction due to carbon formation. The enhanced catalytic performance of co-precipitated catalyst is attributed to a combination effect of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and the finely dispersed nano size NiO x crystallites, resulting in the intimate contact between Ni and Ce0.8Zr0.2O2 particles. The Ni/Ce–ZrO2/θ–Al2O3 also exhibited high catalytic activity during CDR with a synthesis gas conversion more than 97% at 800 °C without significant deactivation for more than 40 h. The high stability of the catalyst is mainly ascribed to the beneficial pre-coating of Ce–ZrO2 resulting in the existence of stable NiO x species, a strong interaction between Ni and the support, and an abundance of mobile oxygen species in itself. TPR results further confirmed that NiO x formation was more favorable than NiO or NiAl2O4 formation and further results suggested the existence of strong metal-support interaction (SMSI) between Ni and the support. Some of the important factors to optimize the CDR of methane such as reaction temperature, space velocity, feed CO2/CH4 ratio and H2O and/or O2 addition were also examined.  相似文献   

5.
The oxygen-exchange properties of Ce0.5Zr0.5O2 samples prepared by the traditional coprecipitation method with the use of a biotemplate (pine wood sawdust) were studied by the temperature-programmed reduction and oxidation methods. The use of the template and the presence of alkali and alkaline-earth metal cations in it provides a high mobility of oxygen and a high capacity with respect to oxygen in the biomorphic oxide. Impurities cause the segregation of Ce- and Zr-enriched phases under high-temperature treatment conditions, which worsens the redox properties of the biomorphic sample. Nevertheless, the ability of the biomorphic sample to play the role of an “oxygen buffer” remains high compared with the coprecipitated oxide subjected to similar treatments.  相似文献   

6.
The solid-state synthesis of undoped K0.5Na0.5NbO3 (KNN) and KNN doped with 1, 2 and 6 mol% Sr, from potassium, sodium and strontium carbonates with niobium pentoxide, was studied using thermal analysis and in situ high-temperature X-ray diffraction (HT-XRD). The thermogravimetry and the differential thermal analyses with evolved-gas analyses showed that the carbonates, which were previously reacted with the moisture in the air to form hydrogen carbonates, partly decomposed when heated to 200 °C. In the temperature interval where the reaction was observed, i.e., between 200 and 750 °C, all the samples exhibited the main mass loss in two steps. The first step starts at around 400 °C and finishes at 540 °C, and the second step has an onset at 540 °C and finishes with the end of the reaction between 630 and 675 °C, depending on the particle size distribution of the Nb2O5 precursor. According to the HT-XRD analysis, the perovskite phase is formed at 450 °C for all the samples, regardless of the Sr content. The formation of a polyniobate phase with a tetragonal tungsten bronze structure was detected by HT-XRD in the KNN with the largest amount of Sr dopant, i.e., 6 mol% of Sr, at 600 °C.  相似文献   

7.
Soot removal for exhaust gas from diesel engine has been addressed due to the more stringent legislation and environmental concerns. MnCo2O4 catalysts were systematically prepared using glucose as a fuel via the auto-combustion method and applied for soot removal. The as-prepared samples were characterized by X-ray diffraction (XRD), O2-temperature-programmed oxidation (TPO) reaction and H2-temperature-programmed reduction reaction (H2-TPR). The catalytic activities for soot combustion were evaluated by micro activity test (MAT) with a tight contact mode between soot and catalysts. Compared with catalysts prepared by the solid state method without glucose, auto-combustion method in the presence of glucose can decrease the synthetic temperature, avoiding high temperature treatment and sintering. The catalysts prepared with glucose could catalyze soot oxidation effectively and the derived values of T10, T50, and T90 were 326, 408, and 468 °C in a tight contact mode, respectively, showing a significant drop of T10, T50, and T90 by 156, 177, and 178 °C for non-catalytic reaction.  相似文献   

8.
Ce2Sn2O7 pyrochlore was synthesized by a hydrothermal method. X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the composition and valence state of the sample. The oxygen exchange property of the Ce2Sn2O7 phase was measured by an oxidation reaction in sealed air atmosphere and a followed reduction reaction in 5% H2-95% N2 atmosphere. Gas chromatography (GC) was used to analyze the oxygen change in the reaction. The results show that Ce2Sn2O7 sample has excellent oxygen absorption capacity at 250°C as Ce3+ ions are oxidized to Ce4+ ions. The oxidized sample can be reduced by 5% H2-95% N2. The refreshed sample remains the capacity of oxygen absorption, while the oxygen exchange capacity degrades with the reduction times.  相似文献   

9.
The catalytic properties of systems prepared by the supporting of CuO onto CeO2, ZrO2, and Zr0.5Ce0.5O2 with particle sizes of 15–25 nm (nitrate pyrolysis (p)) and 5–6 nm (microemulsion method (me)) in the reaction of CO oxidation in an excess of H2 were studied. In the latter case, the supports had an almost homogeneous surface and a small number of defects. The catalytic activity of (me) and (p) supports was low and almost the same, whereas the catalytic activity of CuO/(CeO2, ZrO2, and Zr0.5Ce0.5O2)(me) samples was lower than that of CuO/(CeO2 and ZrO2)(p). The maximum CO conversion (∼100% at 125°C) was observed on 5% CuO/CeO2 (p). The CO and CO2 adsorption species on (p) and (me) catalysts were studied by TPD. Differences in the compositions of copper-containing centers on the surfaces of (p) and (me) systems were found using TPR. The nature of the active centers of CO oxidation and the effect of support crystallite size on the catalytic activity were considered.  相似文献   

10.
Highly compact (99%) solid electrolyte Ce0.8Gd0.2O1.9 with submicron (0.3 μm) grains is synthesized. The dilatometric (20–850°C) and conductivity (180–350°C) measurements are performed on the electrolyte in air and as a function of the partial oxygen pressure \(p_{O_2 } \) (0.21?1×10?25 atm) at 600, 700, and 800°C. An inflection is found in the temperature dependences of the thermal coefficient of linear expansion and conductivity (impedance measurements) at ~230°C, which is the evidence for a phase transition. The activation energies for conduction in the grain bulk and boundaries differ only slightly, indicating that the grain boundaries’ resistance is caused not by the precipitation of the second phase at the boundaries, but most probably by the presence of intergranular nanopores. The dilatometric measurements confirm a significant increase in the linear dimensions of Ce0.8Gd0.2O1.9 in the reducing atmospheres with a parallel increase in its electron conductivity. The electron conductivity and specific elongation increase proportionally to \(p_{O_2 }^{ - 1/4} \) at all temperatures. The \(p_{O_2 } \) values, at which the transport numbers of ions t i = 0.5, are determined. They are 10?22.5, 10?20, and 10?18 atm at 600, 700, and 800°C, respectively.  相似文献   

11.
The kinetics of carbon monoxide oxidation with atmospheric oxygen on a PdCl2-CuCl2/γ-Al2O3 catalyst was studied at T = 27°C and an N2-O2-CO mixture pressure of 1 atm. The catalyst was prepared by cold impregnation. Three groups of mechanistic hypotheses are considered, and two of them are demonstrated to be consistent with kinetic data, although they differ in the roles of water and oxygen in carbon monoxide oxidation.  相似文献   

12.
刘爽  吴晓东  林雨  李敏  翁端 《催化学报》2014,35(3):407-415
通过在Ce0.6Zr0.4O2载体上浸渍Pt(NO32制得Pt/Ce0.6Zr0.4O2催化剂,该催化剂在松散接触条件下,于NO+O2或O2气氛中均表现出比Pt/Al2O3更好的碳烟氧化性能. 进一步研究表明,Pt/Ce0.6Zr0.4O2催化剂中的Pt 与Ce0.6Zr0.4O2存在相互作用,使得催化剂在一定温度范围内对活性氧的利用率大为提高,从而促进了气氛中NO↔NO2的循环,乃至碳烟与NO2的反应和碳烟表面含氧中间物种的生成;更重要的是,这部分活性氧本身可加速含氧中间物种的分解. 因此,在NO + O2的气氛中,Pt/Ce0.6Zr0.4O2催化剂的碳烟起燃温度比Pt/Al2O3降低了34 ℃.  相似文献   

13.
The electrochemical behavior of the LaSrCuO4 − δ/Ce0.9Gd0.1O2 − δ interface is studied by impedance spectroscopy and cyclic voltammetry methods. By analyzing the dependence of the impedance frequency spectra on the oxygen partial pressure, the rate-determining stages of oxygen exchange are determined in the temperature interval of 500–900°C. For temperatures above 700°C, the adsorption of oxygen molecules and their dissociation to oxygen atoms are shown to make a substantial contribution to the polarization resistance of the overall electrode process, besides the charge-transfer resistance.  相似文献   

14.
The effect of calcination temperature on the state of the active component of iron-containing catalysts prepared by the impregnation of silica gel with a solution of FeSO4 and on their catalytic properties in selective H2S oxidation to sulfur was studied. With the use of thermal analysis, XPS, and Mössbauer spectroscopy, it was found that an X-ray amorphous iron-containing compound of complex composition was formed on the catalyst surface after thermal treatment in the temperature range of 400–500°C. This compound contained Fe3+ cations in three nonequivalent positions characteristic of various oxy and hydroxy sulfates and oxide and sulfate groups as anions. Calcination at 600°C led to the almost complete removal of sulfate groups; as a result, the formation of an oxide structure came into play, and it was completed by the production of finely dispersed iron oxide in the ?-Fe2O3 modification (the average particle size of 3.2 nm) after treatment at 900°C. As the calcination temperature was increased from 500 to 700°C, an increase in the catalyst activity in hydrogen sulfide selective oxidation was observed because of a change in the state of the active component. A comparative study of the samples by temperature-programmed sulfidation made it possible to establish that an increase in the calcination temperature leads to an increase in the stability of the iron-containing catalysts to the action of a reaction atmosphere.  相似文献   

15.
The oxidative dehydrogenation of propane on a supported vanadium catalyst was studied (the support was a complex oxide system consisting of a ceria–zirconia solid solution deposited on γ-Al2O3 (CeZrO/γ-Al2O3)). A comparative analysis of the properties of the support and the catalyst prepared on its basis was performed. The support and catalyst were characterized by the BET method, scanning electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. The catalytic properties of the catalyst and support were studied in propane oxidation at 450 and 500°C with pulse feeding of the reagent. The effect of propane on the support was found to improve the oxidative properties of the latter. This behavior of the support is related to the preparation procedure, which leads to the formation on its surface of the crystalline phase of the ceria–zirconia solid solution and amorphous ZrO2 and Al2O3 phases and/or their solid solution. Similar processes occur with the catalyst support during the oxidative dehydrogenation, giving rise to additional active centers (CeVO4).  相似文献   

16.
(1.2–8.3)%FeOх/Al2O3 monolith catalysts have been prepared by impregnating alumina with aqueous solutions of iron(III) nitrate and oxalate and have been tested in NH3 oxidation and in the selective decomposition of N2O in mixtures resulting from ammonia oxidation over a Pt–Rh gauze pack under conditions of nitric acid synthesis (800–900°C). In the case of the support calcined at 1200°C, the catalyst is dominated by bulk Fe2O3 particles localized on the Al2O3 surface. The activity of these samples in both reactions decreases with a decreasing active component content, thus limiting the potential of Fe2(C2O4)3 · 5H2O, an environmentally friendlier but poorly soluble compound, as a substitute for Fe(NO3)3 · 9H2O. Decreasing the support calcination temperature to 1000°C or below leads to the formation of a highly defective Fe–Al–O solid solution in the (1.2–2.7)%FeOх/Al2O3 catalysts. The surface layers of the solid solution are enriched with iron ions or stabilize ultrafine FeOх particles. The catalytic activity of these samples in both reactions is close to the activities measured for ~8%FeOх/Al2O3 samples prepared using iron nitrate.  相似文献   

17.
LiNi0.5Mn1.5O4 powders were prepared through polymer-pyrolysis method. XRD and TEM analysis indicated that the pure spinel structure was formed at around 450 °C due to the very homogeneous intermixing of cations at the atomic scale in the starting precursor in this method, while the well-defined octahedral crystals appeared at a relatively high calcination temperature of 900 °C with a uniform particle size of about 100 nm. When cycled between 3.5 and 4.9 V at a current density of 50 mA/g, the as prepared LiNi0.5Mn1.5O4 delivered an initial discharge capacity of 112.9 mAh/g and demonstrated an excellent cyclability with 97.3% capacity retentive after 50 cycles.  相似文献   

18.
The ZrO(NO3)2-H3PO4-CsF-H2O system was studied at 20°C along the section at a molar ratio of PO43−/Zr = 0.5 (which is of the greatest interest in the context of phase formation) at ZrO2 concentrations in the initial solutions of 2–14 wt % and molar ratios of CsF: Zr = 1−6. The following compounds were isolated for the first time: crystalline fluorophosphates CsZrF2PO4 · H2O, amorphous oxofluorophosphate Cs2Zr3O2F4(PO4)2 · 3H2O, and amorphous oxofluorophosphate nitrate CsZr3O1.25F4(PO4)2(NO3)0.5 · 4.5H2O. The compound Cs3Zr3O1.5F6(PO4)2 · 3H2O was also isolated, which forms in a crystalline or glassy form, depending on conditions. The formation of the following new compounds was established: Cs2Zr3O1.5F5(PO4)2 · 2H2O, Cs2Zr3F2(PO4)4 · 4.5H2O, and Zr3O4(PO4)1.33 · 6H2O, which crystallize only in a mixture with known phases. All the compounds were studied by X-ray powder diffraction, crystal-optical, thermal, and IR spectroscopic analyses.  相似文献   

19.
The limited electrochemical stability and the flammability of the liquid electrolytes presently used in Li-ion batteries stimulates the search for alternatives including ceramic solid electrolytes. Moreover, solid electrolytes also fulfil crucial functions in various large-scale energy storage systems, e.g. as anode-protecting membranes in aqueous Li-air batteries. Here, the processing of the solid electrolytes Li7La3Zr2O12 is studied for applications in Li-air batteries. Molten salt method (MSM) was adopted previously on synthesis of simple oxides; to the best of our knowledge, we report for the first time the adaptation of the MSM to prepare this class of solid electrolytes. As a model compound, we prepared the garnet-related Li6.75La3Zr1.75Ta0.25O12. It has been prepared by using stoichiometric amounts of La2O3, ZrCl4, and Ta2O5 in excess 0.88 M LiNO3:0.12 M LiCl molten salt. Subsequently, samples were heated to various temperatures in the range 600–900 °C for 6 h in air in a recrystallized alumina crucible and finally washed with distilled water to remove excess salts. The obtained Li6.75La3Zr1.75Ta0.25O12 electrolyte powder was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and impedance spectroscopy as well as surface area measurements. The cubic single phase was obtained for samples prepared at temperatures ≥700 °C. The effects of washing with water or aqueous LiOH solution on the structure and conductivity of the phases will be discussed.  相似文献   

20.
Solid solution Bi2Cu0.5Mg0.5Nb2O9–δ with the pyrochlore structure is synthesized by three different methods. Its structure and chemical composition are confirmed by X-ray diffraction analysis, electron microscopy, and energy-dispersive spectroscopy. The electronic-ionic processes are studied by the method of impedance spectroscopy in the frequency range from 0.3 Hz to 1.0 MHz and the temperature range from 0 to 340°С. The data are processed with the use of ZView program. Electrochemical models of samples are obtained in the form of equivalent circuits. The sign of the main charge carrier is determined by the thermo-emf method. Nonlinear effects are studied based on voltammetric characteristics. It is found that at room temperature, the charge in samples is transferred by electrons and cations (presumably, copper). In the temperature range of 260–300°С, the capacitance of samples and the specific conductivity of their volume demonstrate local minimums. Insofar as at these temperatures the oxygen conduction may occur, it is assumed that associates of anions and cations are formed. The decrease in the concentration of charge carries is confirmed by sample’s equivalent circuit into which the Gerischer impedance is introduced to enhance the accuracy. It is shown that at t = 260°С, the lifetime of charge carriers is the minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号