首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The main reactions yielding hydrogen are the recombination of hydrogen atoms on copper clusters and methyl formate decomposition. Methyl formate results from the interaction between the linear methoxy group and the formate complex located on CuO. The source of CO2 appearing in the gas phase is the formate complex, and the source of CO is methyl formate. The rates of methoxy group conversion and product formation over supports (ZrO2, CeO2, Ce0.8Zr0.2O2) and copper-containing catalysts (5%Cu/CeO2, 5%Cu/ZrO2, 2%Cu/Ce0.8Zr0.2O2, 2%Cu/Ce0.1Y0.1Zr0.8) are compared. The dominant process in methoxy group conversion over the supports and copper-containing catalysts is methanol decomposition to H2 and CO and to H2 and CO2, respectively. The methoxy group conversion rate is proportional to the H2 and CO2 formation rate and is determined by the concentration of supported copper.  相似文献   

2.
It was established by X-ray diffraction, TPR, and EPR that microemulsion (m.e.) synthesis yields the binary oxides ZrO2(m.e.) and CeO2(m.e.) and the mixed oxide Zr0.5Ce0.5O2(m.e.) in the form of a tetragonal, cubic, and pseudocubic phase, respectively, having crystallite sizes of 5–6 nm. The bond energy of surface oxygen in the (m.e.) samples is lower than in their analogues prepared by pyrolysis. Hydrogen oxidation on the oxides under study occurs at higher temperatures than CO oxidation. ZrO2(m.e.) and CeO2(m.e.) are active in O2 formation during NO + O2 adsorption, while CeO2 is active during CO + O2 adsorption, too. However, its amount here is one-half to one-third its amount in the pyrolysis-prepared samples, signifying a reduced number of active sites, which are Zr4+ and Ce4+ coordinatively unsaturated cations and Me4+-O2− pairs. O2 radical anions are stabilized in the coordination sphere of Zr4+ coordinatively unsaturated cations via ionic bonding, and in the sphere of Ce4+ cations, via covalent bonding. Ionic bonds are stronger than ionic-covalent bonds and do not depend on the ZrO2 phase composition. Zr0.5Ce0.5O2 is inactive in these reactions because of the strong interaction of Zr and Ce cations. It is suggested that Ce(4 + β)+ coordinatively unsaturated cations exist on its surface, and their acid strength is lower than that of Zr4+ and Ce4+ cations in ZrO2 and CeO2, according to the order ZrO2 > CeO2 ≥ Zr0.5Ce0.5O2. Neither TPR nor adsorption of probe molecules revealed Zr cations on the surface of the mixed oxide.  相似文献   

3.
The effect of the microstructure of titanium dioxide on the structure, thermal stability, and catalytic properties of supported CuO/TiO2 and CuO/(CeO2-TiO2) catalysts in CO oxidation was studied. The formation of a nanocrystalline structure was found in the CuO/TiO2 catalysts calcined at 500°C. This nanocrystalline structure consisted of aggregated fine anatase particles about 10 nm in size and interblock boundaries between them, in which Cu2+ ions were stabilized. Heat treatment of this catalyst at 700°C led to a change in its microstructure with the formation of fine CuO particles 2.5–3 nm in size, which were strongly bound to the surface of TiO2 (anatase) with a regular well-ordered crystal structure. In the CuO/(CeO2-TiO2) catalysts, the nanocrystalline structure of anatase was thermally more stable than in the CuO/TiO2 catalyst, and it persisted up to 700°C. The study of the catalytic properties of the resulting catalysts showed that the CuO/(CeO2-TiO2) catalysts with the nanocrystalline structure of anatase were characterized by the high-est activity in CO oxidation to CO2.  相似文献   

4.
It is demonstrated by ESR measurements that O 2 (CO + O2) radical anions result from CO + O2 adsorption on the oxidized surface of CeO2. These radical anions are stabilized in the coordination sphere of Ce4+ cations located in isolated and associated anionic vacancies. This reaction shows an activation behavior determined by CO adsorption. The variation of O 2 (CO + O2) concentration with CO adsorption temperature suggests that surface carbonates and carboxylates participate in this reaction. In the (0.5– 10.0)%CeO2/ZrO2 system, O 2 forms on supported CeO2 and is stabilized on Ce4+ and Zr4+ cations. The stability of O 2 -Ce4+ complexes is lower on supported CeO2 than on unsupported CeO2, indicating a strong interaction between the cerium cations and the support.__________Translated from Kinetika i Kataliz, Vol. 46, No. 3, 2005, pp. 423–429.Original Russian Text Copyright © 2005 by Il’ichev, Kuli-zade, Korchak.  相似文献   

5.
Carbon dioxide reforming (CDR) of methane to synthesis gas over supported nickel catalysts has been reviewed. The present review mainly focuses on the advantage of ceria based nickel catalysts for the CDR of methane. Nickel catalysts supported on ceria–zirconia showed the highest activity for CDR than nickel supported on other oxides such as zirconia, ceria and alumina. The addition of zirconia to ceria enhances the catalytic activity as well as the catalyst stability. The catalytic performance also depends on the crystal structure of Ni–Ce–ZrO2. For example, nickel catalysts co-precipitated with Ce0.8Zr0.2O2 having cubic phase gave synthesis gas with CH4 conversion more than 97% at 800 °C and the activity was maintained for 100 h during the reaction. On the contrary, Ni–Ce–ZrO2 having tetragonal phase (Ce0.8Zr0.2O2) or mixed oxide phase (Ce0.5Zr0.5O2) deactivated during the reaction due to carbon formation. The enhanced catalytic performance of co-precipitated catalyst is attributed to a combination effect of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and the finely dispersed nano size NiO x crystallites, resulting in the intimate contact between Ni and Ce0.8Zr0.2O2 particles. The Ni/Ce–ZrO2/θ–Al2O3 also exhibited high catalytic activity during CDR with a synthesis gas conversion more than 97% at 800 °C without significant deactivation for more than 40 h. The high stability of the catalyst is mainly ascribed to the beneficial pre-coating of Ce–ZrO2 resulting in the existence of stable NiO x species, a strong interaction between Ni and the support, and an abundance of mobile oxygen species in itself. TPR results further confirmed that NiO x formation was more favorable than NiO or NiAl2O4 formation and further results suggested the existence of strong metal-support interaction (SMSI) between Ni and the support. Some of the important factors to optimize the CDR of methane such as reaction temperature, space velocity, feed CO2/CH4 ratio and H2O and/or O2 addition were also examined.  相似文献   

6.
This work presents some applications of ZrO2 supported over SBA-15 silica as promoter of sulfated zirconia and as support from CuO/CeO2 catalytic system for preferential oxidation of CO to CO2 in hydrogen rich streams, used as feed for proton exchange membrane fuel cells (PEMFC). Different amounts of ZrO2, from 10 to 30 wt.% were incorporated. These prepared materials were characterized by powder XRD, adsorption-desorption of N2 at 77 K, transmission and scanning electron microscopy (TEM and SEM) and X-rays photoelectron spectroscopy (XPS). The acidity was studied by thermo-programmed desorption of ammonia (NH3-TPD). These materials were tested, after treatment with H2SO4, by 2-propanol dehydration and 1-butene isomerization catalytic tests. The samples were found quite good catalyst with strong acid sites, the sample with 20 wt.% of ZrO2 being the better performing sample. Finally this material was successfully used as support for a CuO/CeO2 system, with 6 wt.% of Cu and 20 wt.% of Ce. The resulting catalyst was tested in the preferential oxidation of CO (CO-PROX) attaining conversions close to 100% and high selectivity to CO2.  相似文献   

7.
The selective oxidation of CO in the presence of hydrogen on CuO/CeO2 systems containing Fe and Ni oxides as promoters was studied. The catalysts containing 1–5 wt % CuO and 1–2.5 wt % Fe2O3 supported on CeO2 and the CuO/CeO2 systems containing 1–2.5 wt % NiO were synthesized, and their catalytic activity as a function of temperature was determined. It was found that the additives of Fe and Ni oxides increased the activity of the CuO/CeO2 catalysts with a low concentration of CuO. In this case, the conversion of CO at 150°C approached 100%. At the same time, these additives had no effect on the activity of the CuO/CeO2 systems at a CuO concentration of 5 wt % or higher, which exhibited an initially high activity in the above temperature region. The forms of CO adsorption and the amounts of active sites for CO adsorption and oxidation were studied using temperature-programmed desorption. It was found that the introduction of Fe and Ni additives in a certain preparation procedure facilitated the formation of an additional amount of active centers associated with CuO. Data on the temperature-programmed reduction of samples (the amount of absorbed hydrogen and the maximum temperature of hydrogen absorption) suggested the interaction of all catalyst components, and the magnitude of this interaction depended on the sample preparation procedure. With the use of Mössbauer spectroscopy, it was found that the procedure of iron oxide introduction into the CuO/CeO2 system was responsible for the electron-ion interactions of catalyst components and the reaction mixture.  相似文献   

8.
A series of precipitants and commercial surfactants (soft templates) were employed to synthesize mesoporous/nano CeO2 by a hydrothermal method. As-prepared CeO2 was impregnated with palladium and employed for low-temperature catalytic oxidation of CO. It was found that both soft templates and precipitants had significant effects on the morphology, particle size, crystallinity, and porous structure of the CeO2, having a significant effect on the surface palladium abundance, molar ratios of surface species, and catalytic activity of the final impregnated Pd/CeO2. Using ammonia as precipitant could facilitate increased surface palladium abundance and surface molar ratios of PdO/Pd SMSI , Ce3+/(Ce3+ + Ce4+), and Osurface/Olattice. The catalytic activity of the final Pd/CeO2 catalysts could be enhanced as well. The optimal P123-assisted ammonia-precipitated Pd/CeO2 catalyst exhibited over 99% catalytic conversion of CO at 50 °C.  相似文献   

9.
The screening of commercial nickel catalysts for methanation and a series of nickel catalysts supported on CeO2, γ-Al2O3, and ZrO2 in the reaction of selective CO methanation in the presence of CO2 in hydrogen-containing mixtures (1.5 vol % CO, 20 vol % CO2, 10 vol % H2O, and the balance H2) was performed at the flow rate WHSV = 26000 cm3 (g Cat)−1 h−1. It was found that commercial catalytic systems like NKM-2A and NKM-4A (NIAP-07-02) were insufficiently effective for the selective removal of CO to a level of <100 ppm. The most promising catalyst is 2 wt % Ni/CeO2. This catalyst decreased the concentration of CO from 1.5 vol % to 100 ppm in the presence of 20 vol % CO2 in the temperature range of 280–360°C at a selectivity of >40%, and it retained its activity even after contact with air. The minimum outlet CO concentration of 10 ppm at 80% selectivity on a 2 wt % Ni/CeO2 catalyst was reached at a temperature of 300°C.  相似文献   

10.
We have been exploring the utilization of supported ceria and ceria–zirconia nano-oxides for different catalytic applications. In this comprehensive investigation, a series of Ce x Zr1−x O2/Al2O3, Ce x Zr1−x O2/SiO2 and Ce x Zr1−x O2/TiO2 composite oxide catalysts were synthesized and subjected to thermal treatments from 773 to 1073 K to examine the influence of support on thermal stability, textural properties and catalytic activity of the ceria–zirconia solid solutions. The physicochemical characterization studies were performed using X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HREM), thermogravimetry and BET surface area methods. To evaluate the catalytic properties, oxygen storage/release capacity (OSC) and CO oxidation activity measurements were carried out. The XRD analyses revealed the formation of Ce0.75Zr0.25O2, Ce0.6Zr0.4O2, Ce0.16Zr0.84O2 and Ce0.5Zr0.5O2 phases depending on the nature of support and calcination temperature employed. Raman spectroscopy measurements in corroboration with XRD results suggested enrichment of zirconium in the Ce x Zr1−x O2 solid solutions with increasing calcination temperature thereby resulting in the formation of oxygen vacancies, lattice defects and oxygen ion displacement from the ideal cubic lattice positions. The HREM results indicated a well-dispersed cubic Ce x Zr1−x O2 phase of the size around 5 nm over all supports at 773 K and there was no appreciable increase in the size after treatment at 1073 K. The XPS studies revealed the presence of cerium in both Ce4+ and Ce3+ oxidation states in different proportions depending on the nature of support and the treatment temperature applied. All characterization techniques indicated absence of pure ZrO2 and crystalline inactive phases between Ce–Al, Ce–Si and Ce–Ti oxides. Among the three supports employed, silica was found to stabilize more effectively the nanosized Ce x Zr1−x O2 oxides by retarding the sintering phenomenon during high temperature treatments, followed by alumina and titania. Interestingly, the alumina supported samples exhibited highest OSC and CO oxidation activity followed by titania and silica. Details of these findings are consolidated in this review.  相似文献   

11.
The influence of SiO2, TiO2, and ZrO2 on the structural and redox properties of CeO2 were systematically investigated by various techniques namely, X-ray diffraction (XRD), Raman spectroscopy (RS), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HREM), BET surface area, and thermogravimetry methods. The effect of supporting oxides on the crystal modification of ceria was also mainly focused. The investigated oxides were obtained by soft chemical routes with ultrahigh dilute solutions and were subjected to thermal treatments from 773 to 1073 K. The XRD results suggest that the CeO2–SiO2 sample primarily consists of nanocrystalline CeO2 on the amorphous SiO2 surface. Both crystalline CeO2 and TiO2-anatase phases were noted in the case of CeO2–TiO2 sample. Formation of cubic Ce0.75Zr0.25O2 and Ce0.6Zr0.4O2 (at 1073 K) were observed in the case of CeO2–ZrO2 sample. The cell ‘a’ parameter estimations revealed an expansion of the ceria lattice in the case of CeO2–TiO2, while a contraction is noted in the case of CeO2–ZrO2. The DRS studies suggest that the supporting oxides significantly influence the band gap energy of CeO2. Raman measurements disclose the presence of oxygen vacancies, lattice defects, and displacement of oxide ions from their normal lattice positions in the case of CeO2–TiO2 and CeO2–ZrO2 samples. The XPS studies revealed the presence of silica, titania, and zirconia in their highest oxidation states, Si(IV), Ti(IV), and Zr(IV) at the surface of the materials. Cerium is present in both Ce4+ and Ce3+ oxidation states. The HREM results reveal well-dispersed CeO2 nanocrystals over the amorphous SiO2 matrix in the case of CeO2–SiO2, isolated CeO2 and TiO2 (A) nanocrystals and some overlapping regions in the case of CeO2–TiO2, and nanosized CeO2 and Ce–Zr oxides in the case of CeO2–ZrO2 sample. The exact structural features of these crystals as determined by digital diffraction analysis of HREM experimental images reveal that the CeO2 is mainly in cubic fluorite geometry. The oxygen storage capacity (OSC) as determined by thermogravimetry reveals that the OSC of mixed oxides is more than that of pure CeO2 and the CeO2–ZrO2 exhibits highest OSC.  相似文献   

12.
The catalytic activity of the CuO/ZrO2, CoO/ZrO2, Fe2O3/ZrO2, and CuO/(CoO, Fe2O3)/ZrO2 systems in the reaction of selective CO oxidation in the presence of hydrogen was studied at 20–450°C over the oxide concentration range of 2.5–10 wt % on the surface of ZrO2. The conversion of CO on the CoO/ZrO2 systems was almost independent of the concentration of CoO: 88 or 90% for 2.5 or 10% CoO, respectively. TPR data allowed us to relate the catalytic activity of CoO/ZrO2 to Co-O-Zr clusters, the amount of which was almost constant over the test range of CoO concentrations. The conversion of CO on 2.5% CuO/ZrO2 was 32% (190°C) or 62–66% on 5–10% CuO/ZrO2 (170°C). According to TPR data, clusters like Cu-O-Zr occurred on the surface of ZrO2, and the amount of these clusters reached a maximum upon supporting 5% CuO. The catalytic properties of 5% CuO/5% CoO/ZrO2 and 5% CoO/5% CuO/ZrO2 samples were identical to those of 5% CuO/ZrO2 samples. It is likely that the formation of active reaction sites upon consecutively supporting the oxides occurred on the same surface sites of ZrO2. In this case, Co and Cu oxides competed for cluster formation, and the copper cation can displace the cobalt cation from the formed clusters. The Fe2O3 samples were inactive; a maximum conversion of 34% (290°C) was observed on 10% Fe2O3/ZrO2. The catalytic properties of CuO/Fe2O3/ZrO2 were also identical to those of CuO/ZrO2, and they depended on the presence of Cu-O-Zr clusters on the surface.  相似文献   

13.
A series of Co-modified Ce0.5Zr0.5O2 catalysts with different concentrations of Co (mass %: 0, 2, 4, 6, 8, 10) was investigated for diesel soot combustion. Ce0.5Zr0.5O2 was prepared using the coprecipitation method and Co was loaded onto the oxide using the incipient wetness impregnation method. The activities of the catalysts were evaluated by thermogravimetric (TG) analysis and temperature-programmed oxidation (TPO) experiments. The results showed the soot combustion activities of the catalysts to be effectively improved by the addition of Co, 6 % Co/Ce0.5Zr0.5O2 and that the 8 % Co/Ce0.5Zr0.5O2 catalysts exhibited the best catalytic performance in terms of lower soot ignition temperature (Ti at 349°C) and maximal soot oxidation rate temperature (Tm at 358°C). The reasons for the improved activity were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These results revealed that the presence of Co could lower the reduction temperature due to the synergistic effect between Co and Ce, thereby improving the activity of the catalysts in soot combustion. The 6 % Co catalyst exhibited the best catalytic performance, which could be attributed to the greater amounts of Co3+ and surface oxygen species on the catalyst.  相似文献   

14.
The effect of synthesis conditions, the nature of components, and the ratio between the components on the phase composition, the texture, and the redox and catalytic properties of the Ce-Zr-O, Ce-Zr-M1-O (M1 = Mn, Ni, Cu, Y, La, Pr, or Nd), N/Ce-Zr-O (N = Rh, Pd, or Pt), and Pd/Ce-Zr-M2-O/Al2O3 (M2 = Mg, Ca, Sr, Ba, Y, La, Pr, Nd, or Sm) was considered. A cubic solid solution with the fluorite structure was formed on the introduction of <50 mol % zirconium into CeO2, and the stability of this solid solution depended on preparation procedure and treatment conditions. The presence of transition or rare earth elements in certain concentrations extended the range of compositions with the retained fluorite structure. The texture of the Ce-Zr-O system mainly depended on treatment temperature. An increase in this temperature resulted in a decrease in the specific surface area of the samples. The total pore volume varied over the range of 0.2–0.3 cm3/g and depended on the Ce/Zr ratio. The presence of transition or rare earth elements either increased the specific surface area of the system or made it more stable to thermal treatment. The introduction of the isovalent cation Zr4+ into CeO2 increased the number of lattice defects both on the surface and in the bulk to increase the mobility of oxygen and facilitate its diffusion in the Ce1 − x Zr x O2 lattice. The catalytic properties of the Ce-Zr-M1-O or N/Ce-Zr-M2-O systems were due to the presence of anion vacancies and the easy transitions Ce4+ ai Ce3+, M12n+ ai M1 n+, and N δ+N 0 in the case of noble metals.  相似文献   

15.
We have been exploring the utilization of a simple and fast microwave-induced solution combustion synthesis technique for the preparation of various ceria-based mixed oxides for different catalytic applications. In our comprehensive investigation, CeO2–SiO2 (MWCS), CeO2–TiO2 (MWCT), CeO2–ZrO2 (MWCZ) and CeO2–Al2O3 (MWCA) mixed oxides were synthesized by solution combustion synthesis method using microwave dielectric heating and employed for CO and soot oxidation applications. The intricate relationship between ceria and other supporting oxides has been explored with the help of various analytical techniques namely, X-ray diffraction (XRD), temperature programmed reduction/oxidation (TPR/TPO), temperature programmed desorption (TPD) of ammonia and CO2, Raman spectroscopy (RS), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), BET surface area and thermogravimetry analysis (TGA) methods. XRD results revealed amorphous nature of the material in case of ceria-silica mixed oxide and formation of a specific cubic fluorite type Ce0.5Zr0.5O2 solid solution in the case of ceria-zirconia mixed oxide. Ceria-titania and ceria-alumina mixed oxides exhibited diffraction lines only due to crystalline ceria. Zirconia-based mixed oxide exhibited a lower reduction temperature and better redox properties compared to other samples. TPD of ammonia and CO2 results revealed superior acid–base properties for MWCS mixed oxide. TGA measurements indicated a complete combustion in all preparations. RS results suggested defective structure of mixed oxides resulting in the formation of oxygen vacancies. XPS results revealed that ceria-zirconia mixed oxide contained more Ce3+ compared to other oxides. Among all the mixed oxides, the MWCZ sample exhibited a higher oxygen storage capacity, and better CO and soot oxidation activities. All these interesting findings have been elaborated in this publication.  相似文献   

16.
The effect the means of synthesis have on the texture, phase composition, redox properties, and catalytic activity of binary oxide systems with the composition Ce0.5Zr0.5O2 are studied. The obtained samples are characterized via BET, SEM, DTA, XRD, and Raman spectroscopy. A comparative analysis is performed of the physicochemical properties of biomorphic systems Ce0.5Zr0.5O2 obtained using wood sawdust and cellulose as templates and the properties of binary oxides of the same composition obtained by template-free means. The catalytic properties of the obtained oxide systems Ce0.5Zr0.5O2 are studied in the reaction of carbon black oxidation. It is shown that the texture of the oxide depends on the means of synthesis. When biotemplates are used, fragile porous systems form from thin binary oxide plates containing micro-, meso-, and macropores. Oxide obtained via coprecipitation consists of dense agglomerates with pores around 30 Å in size. In supercritical water, nanoparticles of metal oxide form that are loosely agglomerated. The intermediate spaces between them act as pores more than 100 Å in size. A system of single-phase pseudocubic modification is obtained using a cellulose template. The crystal lattices of all the obtained systems contain a great many defects. It is shown that the system prepared via synthesis in supercritical water has the best oxygen-exchange properties. A comparative analysis is performed of the effect the physicochemical properties of the samples have on their activity in the catalytic oxidation of carbon black.  相似文献   

17.
The prospective ways of using water in sub- and supercritical states for the preparation of nanocrystal oxide catalysts Ce0.5Zr0.5O2, Ce0.1Y x Zr0.9 – x O2, Zr1 – x Y x O2, Zr1 – x In x O2, La2CuO4, supported catalysts Pd/Rh/ZrO2and Pd/Rh/TiO2, and supports CeO2, ZrO2, TiO2are discussed. The proposed technique is characterized by high productivity. It is also ecologically friendly and enables one to obtain multicomponent oxide catalysts with chemical and phase composition and properties that can be changed within large ranges. The physicochemical properties of sub- and supercritical water are discussed. A brief review of the present studies on the use of critical media in various physicochemical processes is given.  相似文献   

18.
Thermal analysis has been used to investigate the crystallization of ZrxCe1-xO2 mixed oxides, prepared by co-precipitation of corresponding hydroxides. For x≤0.5, small crystals of CeO2, were formed at low temperatures (373 K). For x>0.5an exothermic peak at 420°C (693 K) was observed after calcination under a flow of air ofhydroxide samples. This peak was associated with the formation of a ZrxCe1-xO2 solid solution (XRD) in a tetragonal phase (Raman). The solids calcined at 700°C (973 K) present a reactivity towards the carbon black oxidation. The thermal analysis coupled with a gas chromatograph (GC) were used to follow this reactivity. Simultaneous study of the activity (thermal analysis) and the selectivity (GC) in CO or CO2 of the different catalysts revealed an important parameter: acatalyst-soot particle contact. We also obtained a more precise comparison of ZrxCe1-xO2 oxides in the catalytic soot combustion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The catalytic activity of the CoO/CeO2 and CuO/CoO/CeO2 systems in selective CO oxidation in the presence of hydrogen at 20–450°C ([CuO] = 1.0–2.5%, [CoO] = 1.0–7.0%) is reported. The maximum CO conversion (X) decreases in the following order: CuO/CoO/CeO2 (X = 98–99%, T = 140–170°C) > CoO/CeO2 (X = 67–84%, T = 230–240°C) > CeO2 (X = 34%, T = 350°C). TPD, TPR, and EPR experiments have demonstrated that the high activity of CuO/CoO/CeO2 is due to the strong interaction of the supported copper and cobalt oxides with cerium dioxide, which yields Cu-Co-Ce-O clusters on the surface. The carbonyl group in the complexes Coδ+-CO and Cu+-CO is oxidized by oxygen of the Cu-Co-Ce-O clusters at 140–160°C and by oxygen of the Co-Ce-O clusters at 240°C. The decrease in the activity of the catalysts at high temperatures is due to the fact that hydrogen reduces the clusters on which CO oxidation takes place, yielding Co0 and Cu0 particles, which are inactive in CO oxidation. The hydrogenation of CO into methane at high temperatures is due to the appearance of Co0 particles in the catalysts.  相似文献   

20.
The temperature of soot oxidation and efficiency of Ce0.5Zr0.5O2 catalyst depends on its morphology, which determines the area of intergranular contact between the solid substrate and the catalyst. The temperature-programmed reduction in hydrogen to 1000°C and oxidation at 500°C (redox cycles) cause the mobility of oxygen in oxide to be enhanced and decrease the temperature of soot combustion. Oxidation of soot in the air flow on the Ce0.5Zr0.5O2 catalyst result in its activation. Reuse of the catalyst decreases the temperature of soot oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号