首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Optimization》2012,61(5):1177-1193
So far numerous models have been proposed for ranking the efficient decision-making units (DMUs) in data envelopment analysis (DEA). But, the most shortcoming of these models is their two-stage orientation. That is, firstly we have to find efficient DMUs and then rank them. Another flaw of some of these models, like AP-model (A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (10) (1993) 1261–1264), is existence of a non-Archimedean number in their objective function. Besides, when there is more than one weak efficient unit (or non-extreme efficient unit) these models could not rank DMUs. In this paper, we employ hyperplanes of the production possibility set (PPS) and propose a new method for complete ranking of DMUs in DEA. The proposed approach is a one stage method which ranks all DMUs (efficient and inefficient). In addition to ranking, the proposed method determines the type of efficiency for each DMU, simultaneously. Numerical examples are given to show applicability of the proposed method.  相似文献   

2.
Super-efficiency in DEA by effectiveness of each unit in society   总被引:1,自引:0,他引:1  
One of the most important topics in management science is determining the efficiency of Decision Making Units (DMUs). The Data Envelopment Analysis (DEA) technique is employed for this purpose. In many DEA models, the best performance of a DMU is indicated by an efficiency score of one. There is often more than one DMU with this efficiency score. To rank and compare efficient units, many methods have been introduced under the name of super-efficiency methods. Among these methods, one can mention Andersen and Petersen’s (1993) [1] super-efficiency model, and the slack-based measure introduced by Tone (2002) [4]. Each of the methods proposed for ranking efficient DMUs has its own advantages and shortcomings. In this paper, we present a super-efficiency method by which units that are more effective and useful in society have better ranks. In fact, in order to determine super-efficiency by this method, the effectiveness of each unit in society is considered rather than the cross-comparison of the units. To do so, we divide the inputs and outputs into two groups, desirable and undesirable, at the discretion of the manager, and assign weights to each input and output. Then we determine the rank of each DMU according to the weights and the desirability of inputs and outputs.  相似文献   

3.
One of the topics of interest in data envelopment analysis (DEA) is sensitivity and stability and stability analysis of the specific decision making unit (DMU), which is under evaluation. In DEA, efficient DMUs are of primary importance as they define the efficient frontier. In this paper, we develop a new sensitivity analysis approach for the CCR, BCC and Additive models, when variations in the data are considered for a specific efficient DMU and the data for the remaining DMUs are assumed fixed.  相似文献   

4.
A characteristic of traditional DEA CCR mode is that it allows DMUs to measure their maximum efficiency score with the most favorable weights. Thus, it would have some shortcomings, for example, the efficiencies of different DMUs obtained by different sets of weights may be unable to be compared and ranked on the same basis. Besides, there are always more than one DMU to be evaluated as efficient because of the flexibility in the selection of weights; it would cause the situation that all DMUs cannot be fully discriminated. With the research gaps, in this paper, we propose two models considering ideal and anti-ideal DMU to generate common weights for performance evaluation and ranking. Finally, two examples of Asian lead frame firms and flexible manufacturing systems are illustrated to examine the validity of the proposed methods.  相似文献   

5.
Cross-efficiency evaluation has been widely used for identifying the most efficient decision making unit (DMU) or ranking DMUs in data envelopment analysis (DEA). Most existing approaches for cross-efficiency evaluation are focused on how to determine input and output weights uniquely, but pay little attention to the aggregation process of cross-efficiencies and simply aggregate them equally without considering their relative importance. This paper focuses on aggregating cross-efficiencies by taking into consideration their relative importance and proposes three alternative approaches to determining the relative importance weights for cross-efficiency aggregation. Numerical examples are examined to show the importance and necessity of the use of relative importance weights for cross-efficiency aggregation and the most efficient DMU can be significantly affected by taking into consideration the relative importance weights of cross-efficiencies.  相似文献   

6.
In models of data envelopment analysis (DEA), an optimal set of input and output weights is generally assumed to represent the assessed decision making unit (DMU) in the best light in comparison to all the other DMUs. The paper shows that this may not be correct if absolute weight bounds or some other weight restrictions are added to the model. A consequence may be that the model will underestimate the relative efficiency of DMUs. The incorporation of weight restrictions in a maximin DEA model is suggested. This model can be further converted to more operational forms, which are similar to the classical DEA models.  相似文献   

7.
Data envelopment analysis (DEA) is known to produce more than one efficient decision-making unit (DMU). This paper proposes a network-based approach for further increasing discrimination among these efficient DMUs. The approach treats the system under study as a directed and weighted network in which nodes represent DMUs and the direction and strength of the links represent the relative relationship among DMUs. In constructing the network, the observed node is set to point to its referent DMUs as suggested by DEA. The corresponding lambda values for these referent DMUs are taken as the strength of the network link. The network is weaved by not only the full input/output model, but also by models of all possible input/output combinations. Incorporating these models into the system basically introduces the merits of each DMU under various situations into the system and thus provides the key information for further discrimination. Once the network is constructed, the centrality concept commonly used in social network analysis—specifically, eigenvector centrality—is employed to rank the efficient DMUs. The network-based approach tends to rank high the DMUs that are not specialized and have balanced strengths.  相似文献   

8.
The Charnes, Cooper and Rhodes (CCR) DEA model and its linear forms maximise the efficiency of the assessed decision making unit (DMU) and, at the same time, the ratio of this efficiency to the maximum efficiency taken across all the DMUs, the latter naturally always being equal to one. It has been shown recently that, in the presence of absolute weight bounds, these models may not maximise the ratio of these efficiencies, a fact that may cause problems with the interpretation and use of the optimal primal and dual solutions. For example, an inefficient DMU may have greater efficiency than its target unit for some weights. This paper investigates the problem in greater detail; it shows that, in the linear DEA model maximising the total virtual output of the assessed DMU, the problem occurs only if upper bounds are imposed on the output weights. A similar result is established for the model that minimises the total virtual input.  相似文献   

9.
Super-efficiency data envelopment analysis (DEA) model is obtained when a decision making unit (DMU) under evaluation is excluded from the reference set. Because of the possible infeasibility of super-efficiency DEA model, the use of super-efficiency DEA model has been restricted to the situations where constant returns to scale (CRS) are assumed. It is shown that one of the input-oriented and output-oriented super-efficiency DEA models must be feasible for a any efficient DMU under evaluation if the variable returns to scale (VRS) frontier consists of increasing, constant, and decreasing returns to scale DMUs. We use both input- and output-oriented super-efficiency models to fully characterize the super-efficiency. When super-efficiency is used as an efficiency stability measure, infeasibility means the highest super-efficiency (stability). If super-efficiency is interpreted as input saving or output surplus achieved by a specific efficient DMU, infeasibility does not necessary mean the highest super-efficiency.  相似文献   

10.
In many applications of widely recognized technique, DEA, finding the most efficient DMU is desirable for decision maker. Using basic DEA models, decision maker is not able to identify most efficient DMU. Amin and Toloo [Gholam R. Amin, M. Toloo, Finding the most efficient DMUs in DEA: an improved integrated model. Comput. Ind. Eng. 52 (2007) 71–77] introduced an integrated DEA model for finding most CCR-efficient DMU. In this paper, we propose a new integrated model for determining most BCC-efficient DMU by solving only one linear programming (LP). This model is useful for situations in which return to scale is variable, so has wider range of application than other models which find most CCR-efficient DMU. The applicability of the proposed integrated model is illustrated, using a real data set of a case study, which consists of 19 facility layout alternatives.  相似文献   

11.
This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses. It is shown that super-efficiency score can be decomposed into two data perturbation components of a particular test frontier decision making unit (DMU) and the remaining DMUs. As a result, DEA sensitivity analysis can be done in (1) a general situation where data for a test DMU and data for the remaining DMUs are allowed to vary simultaneously and unequally and (2) the worst-case scenario where the efficiency of the test DMU is deteriorating while the efficiencies of the other DMUs are improving. The sensitivity analysis approach developed in this paper can be applied to DMUs on the entire frontier and to all basic DEA models. Necessary and sufficient conditions for preserving a DMU’s efficiency classification are developed when various data changes are applied to all DMUs. Possible infeasibility of super-efficiency DEA models is only associated with extreme-efficient DMUs and indicates efficiency stability to data perturbations in all DMUs.  相似文献   

12.
In data envelopment analysis (DEA) efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for the basic DEA models, such as, those proposed by Charnes, Cooper and Rhodes (CCR), Banker, Charnes and Cooper (BCC) and additive models, when variations in the data are simultaneously considered for all DMUs. By means of modified DEA models, in which the specific DMU under examination is excluded from the reference set, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalises the usual sensitivity analysis approach developed in which perturbations of the data are only applied to the test DMU while all the remaining DMUs remain fixed. In our framework data are allowed to vary simultaneously for all DMUs across different subsets of inputs and outputs. We study the relations of the infeasibility of modified DEA models employed and the robustness of DEA models. It is revealed that the infeasibility means stability. The empirical applications demonstrate that DEA efficiency classifications are robust with respect to possible data errors, particularly in the convex DEA case.  相似文献   

13.
We provide an alternative framework for solving data envelopment analysis (DEA) models which, in comparison with the standard linear programming (LP) based approach that solves one LP for each decision making unit (DMU), delivers much more information. By projecting out all the variables which are common to all LP runs, we obtain a formula into which we can substitute the inputs and outputs of each DMU in turn in order to obtain its efficiency number and all possible primal and dual optimal solutions. The method of projection, which we use, is Fourier–Motzkin (F–M) elimination. This provides us with the finite number of extreme rays of the elimination cone. These rays give the dual multipliers which can be interpreted as weights which will apply to the inputs and outputs for particular DMUs. As the approach provides all the extreme rays of the cone, multiple sets of weights, when they exist, are explicitly provided. Several applications are presented. It is shown that the output from the F–M method improves on existing methods of (i) establishing the returns to scale status of each DMU, (ii) calculating cross-efficiencies and (iii) dealing with weight flexibility. The method also demonstrates that the same weightings will apply to all DMUs having the same comparators. In addition it is possible to construct the skeleton of the efficient frontier of efficient DMUs. Finally, our experiments clearly indicate that the extra computational burden is not excessive for most practical problems.  相似文献   

14.
Cross-efficiency evaluation is a commonly used approach for ranking decision-making units (DMUs) in data envelopment analysis (DEA). The weights used in the cross-efficiency evaluation may sometimes differ significantly among the inputs and outputs. This paper proposes some alternative DEA models to minimize the virtual disparity in the cross-efficiency evaluation. The proposed DEA models determine the input and output weights of each DMU in a neutral way without being aggressive or benevolent to the other DMUs. Numerical examples are tested to show the validity and effectiveness of the proposed DEA models and illustrate their significant role in reducing the number of zero weights.  相似文献   

15.
本文通过对Shephard距离函数的引入,正式构建了DEA TOPSIS决策单元排序方法的框架。本文首先定义了正(负)理想决策制定单元(DMU)以及相应的(反)生产可能集,然后在考虑正(负)理想DMU的条件下分别给出DMU的(反)效率评价模型以及对应的Shephard距离函数,然后基于评价对象到理想DMU相对接近度这一综合评价值给出了DMU的一个完全排序。最后,本文通过算例分析说明了该方法的有效性和实用性。  相似文献   

16.
《Applied Mathematical Modelling》2014,38(21-22):5334-5346
The determination of a single efficient decision making unit (DMU) as the most efficient unit has been attracted by decision makers in some situations. Some integrated mixed integer linear programming (MILP) and mixed integer nonlinear programming (MINLP) data envelopment analysis (DEA) models have been proposed to find a single efficient unit by the optimal common set of weights. In conventional DEA models, the non-Archimedean infinitesimal epsilon, which forestalls weights from being zero, is useless if one utilizes the well-known two-phase method. Nevertheless, this approach is inapplicable to integrated DEA models. Unfortunately, in some proposed integrated DEA models, the epsilon is neither considered nor determined. More importantly, based on this lack some approaches have been developed which will raise this drawback.In this paper, first of all some drawbacks of these models are discussed. Indeed, it is shown that, if the non-Archimedean epsilon is ignored, then these models can neither find the most efficient unit nor rank the extreme efficient units. Next, we formulate some new models to capture these drawbacks and hence attain assurance regions. Finally, a real data set of 53 professional tennis players is applied to illustrate the applicability of the suggested models.  相似文献   

17.
Data envelopment analysis (DEA) evaluates the performance of decision making units (DMUs). When DEA models are used to calculate efficiency of DMUs, a number of them may have the equal efficiency 1. In order to choose a winner among DEA efficient candidates, some methods have been proposed. But most of these methods are not able to rank non-extreme efficient DMUs. Since, the researches performed about ranking of non-extreme efficient units are very limited, incomplete and with some difficulties, we are going to develop a new method to rank these DMUs in this paper. Therefore, we suppose that DMU o is a non-extreme efficient under evaluating DMU. In continue, by using “Representation Theorem”, DMU o can be represented as a convex combination of extreme efficient DMUs. So, we expect the performance of DMU o be similar to the performance of convex combination of these extreme efficient DMUs. Consequently, the ranking score of DMU o is calculated as a convex combination of ranking scores of these extreme efficient DMUs. So, the rank of this unit will be determined.  相似文献   

18.
It is important to consider the decision making unit (DMU)'s or decision maker's preference over the potential adjustments of various inputs and outputs when data envelopment analysis (DEA) is employed. On the basis of the so-called Russell measure, this paper develops some weighted non-radial CCR models by specifying a proper set of ‘preference weights’ that reflect the relative degree of desirability of the potential adjustments of current input or output levels. These input or output adjustments can be either less or greater than one; that is, the approach enables certain inputs actually to be increased, or certain outputs actually to be decreased. It is shown that the preference structure prescribes fixed weights (virtual multiplier bounds) or regions that invalidate some virtual multipliers and hence it generates preferred (efficient) input and output targets for each DMU. In addition to providing the preferred target, the approach gives a scalar efficiency score for each DMU to secure comparability. It is also shown how specific cases of our approach handle non-controllable factors in DEA and measure allocative and technical efficiency. Finally, the methodology is applied with the industrial performance of 14 open coastal cities and four special economic zones in 1991 in China. As applied here, the DEA/preference structure model refines the original DEA model's result and eliminates apparently efficient DMUs.  相似文献   

19.
指标可取负值的基于输入与输出的DEA模型   总被引:1,自引:0,他引:1  
有关基于输入与输出的DEA模型,本文与现有文献的不同之处,一是模型中的评价指标可取负值,二是被评的决策单元可以不是所给的n个决策单元之一,三是模型并非由多目标规划模型推得.此外,给出了有关此模型的三个定理.因此,可知有关此模型的最优解存在的充分条件;在求解此模型后就能在判断决策单元的DEA有效性的同时计算出其相对效率,并能计算出其在DEA相对有效面上的"投影".  相似文献   

20.
传统DEA方法相对于决策单元全体对决策单元进行评价,广义DEA方法相对于样本单元全体对决策单元进行评价.由于参照系的不同,对不同决策单元的相对效率评价结果可能不同.针对这种情况,对基于BC2模型的只有投入或只有产出的传统和广义DEA模型进行说明,并通过样本前沿面的移动对广义DEA模型中相对效率值进行几何刻画.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号