首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
通过在水相中加入乙醇和氨水, 将单分子多巴胺聚合成具有良好光热转换能力的聚多巴胺纳米颗粒(PDA), 并利用π-π作用与共价键作用, 将抗癌药物阿霉素(Dox)负载到聚多巴胺纳米颗粒的表面, 制备了聚多巴胺纳米颗粒负载阿霉素(PDA-Dox), 研究了PDA-Dox的药物缓释性能. 结果发现, PDA-Dox能够在酸性环境下增加药物释放. 细胞实验显示, PDA-Dox配合激光照射, 能够通过化疗和光热治疗高效地杀死癌细胞.  相似文献   

2.
聚丙烯酰胺存在下微波高压合成银纳米粒子及其光谱特性   总被引:4,自引:0,他引:4  
覃爱苗  蒋治良  刘庆业  廖雷  蒋毅民 《分析化学》2002,30(10):1254-1256
以聚丙烯酰胺为还原剂和稳定剂 ,采用微波高压液相合成法制备了黄色银纳米粒子。用吸收光谱和共振散射光谱研究了其制备条件的影响。在 4 2 1.6nm处产生最大吸收峰 ,在 4 70nm处产生一个最强共振散射峰。实验表明 :该法制备的银纳米粒子粒径均匀 ,平均粒径为 6 6nm ,其稳定性和分散性较好 ,合成方法简便、快捷。  相似文献   

3.
利用铁离子诱发吡咯氧化聚合反应制备了尺寸均一的聚吡咯纳米粒子, 并进一步负载化疗药物吉西他滨, 得到了吉西他滨/聚吡咯复合纳米粒子. 该复合纳米粒子对吉西他滨的负载能力强, 在水溶液中的稳定性好, 有助于降低吉西他滨对正常组织的毒副作用. 此外, 该复合纳米粒子在近红外光区有较强的吸收, 能够将吸收的光能转化为热, 是一种良好的光热试剂, 具有光热治疗功能. 同时, 该复合纳米粒子能够在热刺激下释放吉西他滨, 具有光热介导的化疗功能. 因此, 吉西他滨/聚吡咯复合纳米粒子是一种兼具化疗和光热治疗功能的联合治疗试剂. 复合纳米粒子在808 nm近红外激光照射下能够快速提升系统温度, 实现光热治疗与化疗联合杀伤卵巢癌细胞, 具有良好的生物医学应用潜力.  相似文献   

4.
通过咪唑基离子液单体与二乙烯苯的自由基聚合制备了聚离子液水凝胶,并通过一步还原得到了离子液水凝胶负载金纳米粒子的复合材料。用UV-Vis光谱和透射电子显微镜研究了金纳米粒子在离子液水凝胶内部的分散状态及阴离子响应性聚集。结果表明,由于空间位阻和静电作用,制得的金纳米粒子的表面等离子共振吸收峰为527 nm,在离子液水凝胶中呈均匀分散的球形(2~5 nm);在PF6-阴离子的作用下,形成了疏水性水凝胶,使凝胶收缩,凝胶内部的金纳米粒子发生聚集,其吸收峰红移到532 nm,初步证实了此水凝胶具有阴离子响应性。  相似文献   

5.
在山竹果壳提取液中,以山竹多酚既作还原剂又作保护剂,制备了具有高度稳定性、单分散性的亲水性金纳米粒子。利用紫外可见分光光度法、透射电子显微镜和X射线衍射等手段对制备的金纳米粒子进行了表征和分析。结果表明:金纳米粒子的尺寸大小在9~23nm范围,升高温度其还原反应速率加快,所得金纳米粒子的尺寸减小、单分散性提高。山竹多酚保护金的金纳米颗粒具有pH值调控的分散可逆性。降低山竹提取液的浓度可得到包括单晶纳米片在内的多形态金纳米颗粒。  相似文献   

6.
采用“药物修饰-共组装”法制备了(羟基喜树碱@胆酸钠)-层状双金属氢氧化物纳米杂化物. 先用胆酸钠(SCL)包裹羟基喜树碱(HCPT)形成胶束, 再与微反应器制备的层状双氢氧化物(LDH)纳米片共组装形成纳米杂化物, 其载药量可达12.9%, 杂化物中HCPT以高生物活性的内酯形式存在. 采用聚乙二醇(PEG)和羧甲基纤维素(CMC)分别对所制备的(HCPT@SCL)-LDH纳米杂化物进行了表面修饰, 结果表明, 纳米杂化物的分散性得到明显改善; PEG的修饰效果优于CMC, 所获得的PEG-(HCPT@SCL)-LDH杂化物的平均粒径可小至约70 nm, 具有良好的分散性和药物缓释效果. 其药物释放过程可用准二级动力学方程描述, 颗粒内部扩散是药物释放过程的控制步骤.  相似文献   

7.
郝燕  王帅  孙蔷  石磊  陆安慧 《催化学报》2015,(4):612-619
负载型贵金属纳米催化剂中的金属纳米粒子易发生团聚或流失,因此提高金属活性组分的分散性和稳定性很重要。我们报道了一种制备高分散钯纳米催化剂的方法,通过浸泡法将氯钯酸前驱体负载到苯并噁嗪聚合物上,再经过惰性气氛一步热解得到纳米炭球担载钯催化剂.催化剂性能通过温和条件下苯甲醇氧化反应进行评价.经过500℃热处理制备的催化剂,从TEM图可以看出Pd纳米粒子均匀分散在载体上,尺寸大小约为3 nm,这是由于载体和钯活性组分的配位作用有利于提高钯纳米粒子的分散性和稳定性.通过调控金属负载量及负载时间,尽可能地实现活性组分分布在载体外表面,制备的催化剂上最高TOF为690 h-1.此催化剂同时具有较好的循环稳定性,失活后的催化剂经过200℃焙烧即可实现再生.  相似文献   

8.
近年来,以聚多巴胺球支撑的纳米复合材料越来越受到人们的关注。聚多巴胺球有表面功能化基团如—OH、—NH_2等,决定了聚多巴胺球可以充当多种纳米复合材料的活性载体。利用聚多巴胺良好的还原性制备并负载银纳米粒子于聚多巴胺球表面,制备出的新型复合材料银纳米粒子-聚多巴胺球(以下简写为Ag@pdop)。Au修饰电极和银纳米粒子对过氧化氢的还原反应均具有很好的催化性能,利用两者特点将其复合制备修饰电极实现对H2O2的无酶传感,检测灵敏度达到了14.7μA/(mmol·L-1),检出限可达11.8μmol/L,线性范围0.2~6.0mmol/L,检测结果及抗干扰能力均令人满意。  相似文献   

9.
利用氯化钨和吡咯等原料通过溶剂热法和原位还原制备了聚吡咯包裹的WO3-x纳米粒子。用扫描电镜和红外光谱表征了复合材料,通过单线态氧生成能力、光热测试和体外杀菌实验,对比了聚吡咯包裹前后WO3-x纳米粒子的光动力光热和杀菌性能。结果表明,得到的聚吡咯包裹的WO3-x纳米粒子复合材料在808 nm照射下具有较好的单线态氧生成能力及光热性能。体外杀菌实验证明了其对革兰氏阳性菌和革兰氏阴性菌具有优秀的杀菌性能,对金黄色葡萄球菌和大肠杆菌的杀菌率分别为99.89%和99.71%。  相似文献   

10.
近年来,以聚多巴胺球支撑的纳米复合材料越来越受到人们的关注。聚多巴胺球有表面功能化基团如—OH、—NH_2等,决定了聚多巴胺球可以充当多种纳米复合材料的活性载体。利用聚多巴胺良好的还原性制备并负载银纳米粒子于聚多巴胺球表面,制备出的新型复合材料银纳米粒子-聚多巴胺球(以下简写为Ag@pdop)。Au修饰电极和银纳米粒子对过氧化氢的还原反应均具有很好的催化性能,利用两者特点将其复合制备修饰电极实现对H2O2的无酶传感,检测灵敏度达到了14.7μA/(mmol·L-1),检出限可达11.8μmol/L,线性范围0.2~6.0mmol/L,检测结果及抗干扰能力均令人满意。  相似文献   

11.
Inspired by sweet or sugar‐coated bullets that are used for medications in clinics and the structure and function of biological melanin, a novel kind of sweet polydopamine nanoparticles and their anticancer drug doxorubicin loaded counterparts are prepared, which integrate an active targeting function, photothermal therapy, and chemotherapy into one polymeric nanocarrier. The oxidative polymerization of lactosylated dopamine and/or with dopamine are performed under mild conditions and the resulting sweet nanoparticles are thoroughly characterized. When exposed to an 808 nm continuous‐wave diode laser, the magnitude of temperature elevation not only increases with the concentration of nanoparticles, but can also be tuned by the laser power density. The nanoparticles possess strong near infrared light absorption, high photothermal conversion efficiency, and good photostability. The nanoparticles present tunable binding with RCA120 lectin and a targeting effect to HepG2 cells, confirmed by dynamic light scattering, turbidity analysis, MTT assay, and flow cytometry. Importantly, the sweet nanoparticles give the lowest IC50 value of 11.67 μg mL−1 for chemo‐photothermal therapy compared with 43.19 μg mL−1 for single chemotherapy and 67.38 μg mL−1 for photothermal therapy alone, demonstrating a good synergistic effect for the combination therapy.  相似文献   

12.
A unique fluorescent-magnetic hybrid bimodal nanocomposite was prepared by the layer-by-layer self-assembly (LbL) technique fabrication of water-soluble conjugated polymers (CPs) onto the CoFe2O4@SiO2 core-shell nanoparticles (NPs). First, magnetic CoFe2O4 nanoparticles were prepared as the magnetic core and coated with a SiO2 shell to obtain a good dispersion in aqueous solution. Then the polyelectrolytes and cationic conjugated polymer PFV was assembled onto the surface of core-shell nanoparticles by the LbL technique. The prepared nanocomposites were magnetically responsive and fluorescent, simultaneously. Finally, the biomacromolecule heparin sodium (HS) was then assembled on the outer layer of the nanocomposite to provide a cytocompatible surface. The nanocomposites show monodispersity, good fluorescence and good biocompatibility that are useful for efficient cellular imaging. Moreover, the colloidal stability and the cellular uptake ability of the nanocomposition with HS layer were efficiently improved.  相似文献   

13.
The photothermal effect is the generation of heat by molecules or particles upon high‐energy laser irradiation, and near‐infrared absorbers such as gold nanoparticles and organic dyes have a range of potential photothermal applications. The favourable photothermal properties of thiophene‐functionalised croconaine dyes were recently discovered. The synthesis and properties of novel croconaine rotaxane and pseudorotaxane architectures capable of efficient photothermal performance in both organic and aqueous environments are reported. The versatility of this dye‐encapsulation strategy was demonstrated by the preparation of two organic croconaine rotaxanes using different synthetic methods: the formation of an aqueous pseudorotaxane association complex, and the synthesis of water‐soluble, croconaine‐doped silicated micelle nanoparticles. All of these near‐infrared‐absorbing systems exhibit excellent photothermal behaviour, with pseudorotaxane and rotaxane formation vital for effective aqueous heat generation. Dye encapsulation provides steric protection to enhance the stability of a water‐sensitive croconaine dye, while rotaxane‐doped nanoparticles avoid detrimental band broadening caused by chromophore coupling.  相似文献   

14.
Carbon-supported nickel nanoparticles have been prepared by a sol–gel process under N2 or H2 atmospheres using different solvents such as distilled water, ethanol, acetone and 1-propanol. In the aqueous sol–gel process, nickel nanoparticles with pure face-centered-cubic (fcc) phase can be obtained under N2 atmosphere by using nickel nitrate, tartaric acid and sodium dodecyl sulfonate. When organic solvents are applied, nickel (Π) acetylacetone is required in order to obtain nickel nanoparticles with pure fcc phase under N2 atmosphere. When the protecting atmosphere is H2, nickel nitrate can be used to obtain nickel particles with pure fcc phase. Nickel nanoparticles with grain sizes of 4–6 nm in diameter can be prepared by using nickel (Π) acetylacetone [Ni(acac)2], citric acid and hexadecylamine with solvent being acetone. 1-propanol is also effective in the preparation of nickel nanoparticles in this sol–gel process. We suggest that this sol–gel may be used for other metallic nanocrystals.  相似文献   

15.
We report here porphodilactol derivatives and their corresponding metal complexes. These systems show promise as “all-in-one” phototheranostics and are predicated on a design strategy that involves controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation. The requisite balance was achieved by tuning the aromaticity of these porphyrinoid derivatives and forming complexes with one of two lanthanide cations, namely Gd3+ and Lu3+. The net result led to a metalloporphodilactol system, Gd-trans-2, with seemingly optimal ISC efficiency, photothermal conversion efficiency and fluorescence properties, as well as good chemical stability. Encapsulation of Gd-trans-2 within mesoporous silica nanoparticles (MSN) allowed its evaluation for tumour diagnosis and therapy. It was found to be effective as an “all-in-one” phototheranostic that allowed for NIR fluorescence/photoacoustic dual-modal imaging while providing an excellent combined PTT/PDT therapeutic efficacy in vitro and in vivo in 4T1-tumour-bearing mice.

We report here porphodilactol derivatives and their corresponding metal complexes as “all-in-one” phototheranostics by controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation.  相似文献   

16.
Wang  Xianheng  Yang  Lei  Yang  Peng  Guo  Wancai  Zhang  Quan-Ping  Liu  Xianhu  Li  Yiwen 《中国科学:化学(英文版)》2020,63(9):1295-1305
Melanin-inspired polymers are currently the focus of growing interest for a wide range of applications ranging from energy to biomedical area. Whilst researchers have made numerous attempts to prepare and utilize polydopamine nanoparticles(PDA NPs), they have made limited progress in developing and discovering another typical functional mimic of natural melanin, poly(levodopa)(P(L-DOPA)) NPs, probably due to the lack of facile synthetic strategies towards satisfactory structural and functional control of melanin-like NPs. Herein, we reported a one-pot preparation method towards P(L-DOPA) NPs with good yields and controllable size/property in an aqueous solution assisted by various metal ions(i.e., Ni(II), Mg(II), Ca(II), Fe(III), Mn(II), Co(II), Zn(II) and Cd(II)). Interestingly, the resulting P(L-DOPA) NPs exhibited enhanced light absorption and photothermal behaviors compared with well-established PDA NPs, which can be employed to further fabricate kinds of photothermal composite actuators with promising performances such as folding, switching, and forward-moving. This study offers a facile and robust way to synthesize new synthetic melanins beyond PDA, and facilitates further functional discovery and evolution of melanin-inspired polymers and composites.  相似文献   

17.
Amyloid peptide (Aβ) is found in the brain and blood of both healthy and diseased individuals alike. However, upon secondary structure transformation to a β-sheet dominated conformation, the protein aggregates. These aggregates accumulate to form neuritic plaques that are implicated in the pathogenesis of Alzheimer's disease. Gold nanoparticles are excellent photon-thermal energy converters. The extinction coefficient of the surface plasmon band of gold nanoparticles is very large when compared to typical organic dyes. In this study, gold nanoparticle–Aβ conjugates were prepared and the photothermal ablation of amyloid peptide aggregates by laser irradiation was studied. Monofunctional gold nanoparticles were prepared using a recently reported solid phase modification method and then coupled to fragments of Aβ peptide, namely Aβ(31–35) and Aβ(25–35). The conjugates were then mixed with Aβ fragments in solution. The aggregated peptide formation was studied by a series of spectroscopic and microscopic techniques. The peptide aggregates were then irradiated by a continuous laser. With gold nanoparticle–Aβ conjugates present the aggregates were destroyed by photothermal ablation. Gold nanoparticles without Aβ conjugation were not incorporated into the aggregates and when irradiated did not result in photothermal ablation. With gold nanoparticle–Aβ conjugates the ablation was selective to the site of irradiation and minimal damage was observed as a result of thermal diffusion. In addition to the application of photoablation to a protein-based sample the nanoparticles and the chemistry involved provide an easily monofunctionalized photothermal material for the biological conjugation.  相似文献   

18.
纳米Fe@SiO2一步合成及其对Cr(VI)的去除   总被引:1,自引:0,他引:1  
利用液相还原与改进的St(o)br法相结合,在不使用表面改性剂和氨水的条件下,通过向原硅酸乙酯(TEOS)和氯化铁混合溶液直接添加硼氢化钾,一步合成了二氧化硅包覆的纳米铁复合材料(Fe@SiO2).通过X射线粉末衍射(XRD)仪、能量色散X射线仪(EDAX)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)吸收分光光度计、傅里叶红外(FTIR)光谱仪、X射线光电子能谱仪(XPS)等对所得样品的形貌、结构和组成进行表征.将制备的Fe@SiO2用于水体中Cr(VI)还原去除并考察了TEOS添加量对其去除能力的影响.结果表明Fe@SiO2具有清晰的核壳结构,多孔的SiO2层包裹1-2个球形纳米铁粒子.纳米铁粒径主要分布在20-30 nm之间,随着TEOS投加量的增加,SiO2层变厚,纳米铁核具有更好的分散性.与未包覆型纳米铁相比,Fe@SiO2对Cr(VI)的去除能力显著提高.TEOS投加量为0.1 mL所制备的Fe@SiO2对Cr(VI)去除能力(以Fe的质量计算)达到最大,为466.67 mg·g-1,而未包覆型纳米铁仅为76.35 mg·g-1.  相似文献   

19.
In this work, a simple, facile, and sensitive magnetic solid‐phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high‐performance liquid chromatography analysis. Gold‐modified Fe3O4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8–500 μg/L for all the analytes) was attained with good correlation (R2 ≥ 0.991). The low limits of detection were 0.20–0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号