首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
采用流化床燃烧技术,使用自制Cu/γ-Al2O3颗粒作为催化剂床料,实验研究了超低浓度甲烷在流化床中催化燃烧时床层温度(450~700℃)、流化风速比ω(1.5 ~4)、进气甲烷体积分数(0.3% ~2%)等对甲烷燃烧效率的影响.结果表明,床层温度是影响甲烷催化燃烧反应的关键因素,甲烷的转化率随着床层温度的升高而增加;床层温度达到650℃时,甲烷含量低于1%的超低浓度甲烷其转化率超过95%,继续提高床层温度至700℃且控制流化风速比ω≤2可以实现甲烷的完全转化;甲烷转化率随着流化风速和进气甲烷浓度的增加而降低,当ω>3.5时,温度对甲烷转化的影响减弱,未燃烧的甲烷含量增大.动力学实验发现,床层温度较低时,催化反应受动力学控制,测得催化反应的活化能Eα为1.26×105 J/mol,反应级数m为0.73,当温度t>450℃时,扩散作用影响显著,反应级数增大.  相似文献   

2.
利用自制的铜基球形甲烷催化燃烧催化剂,在小型流化床反应器中对模拟含氧煤层气进行了流化床催化燃烧脱氧的实验研究,考察了床层温度、催化剂粒径、空速对脱氧效率和CO2选择性的影响。结果表明,较高的反应床层温度使催化剂活性增强,进而提高催化脱氧效率。床层温度在450 ℃以上,脱氧效率可稳定保持在95%以上。较小的催化剂粒径降低了内扩散阻力对催化反应的影响,提高催化反应的CO2选择性。床层温度在450 ℃以下时,降低空速可提高氧气转化率,但温度高于450 ℃时,脱氧反应速率加快,空速变化对脱氧效率影响不明显。此外,通过调节CH4/Air比例模拟不同含氧量的煤层气,考察流化床反应器及催化剂对含氧煤层气中O2浓度变化的适应性。模拟含氧煤层气中氧气体积分数在5%~15%,该催化剂均表现出高的脱氧活性和选择性,反应器出口气体中氧气体积分数低于0.2%,CO2选择性高于98%。  相似文献   

3.
本文采用计算流体力学方法建立了以沼气为原料气的CO2甲烷化反应器模型,通过多物理场耦合求解获得了不同反应条件下甲烷化反应器内的温度分布和反应速率等数据,考察了反应温度、压力、流速等对甲烷化反应的影响。研究结果表明,提高反应温度和压力有利于提高CO2甲烷化反应速率和生产效率,但在相同装填量的催化剂床层CO2的出口转化率降低。以Al2O3为载体的Ni催化剂,在床层直径小于25 mm时,恒壁温条件下床层内外温差为3.1℃。综合热力学和动力学两方面的影响,以沼气为原料的CO2甲烷化反应温度应以300~400℃为宜。在300℃,1.0 MPa的反应条件下,反应停留时间大于257.6 s可达到高于98%的CO2转化率。  相似文献   

4.
助剂MgO、CaO对甲烷水蒸气重整Ni/γ-Al2O3催化性能的影响   总被引:3,自引:1,他引:2  
采用固定床装置,考察了以共浸方式引入的助剂MgO、CaO对Ni/γ-Al2O3催化剂在甲烷水蒸气催化重整中的催化反应性能的影响。结果表明,在H2O/CH4/N2的摩尔比为2.86/1/3.28,GHSV为1800h-1,反应温度为700℃下,催化剂Ni-CaO/Al2O3催化性能最好;反应初期甲烷转化率可达到96.95%、CO选择性可达68.93%、H2收率可达73.58%。XRD和H2-TPR结果表明,CaO的存在使催化剂中的活性NiO组分增多,还原性和分散性能较好。利用热分析技术对积炭进行考察发现反应10h后的Ni-CaO/Al2O3催化剂上并未出现导致催化剂失活的炭物种。  相似文献   

5.
采用一步合成法制备了Al2O3负载Pt催化剂Pt/Al2O3,以甲醇催化燃烧作为目标反应研究了其催化性能,考察了还原剂浓度、表面活性剂用量、表面活性剂浓度和煅烧温度对Pt/Al2O3甲醇低温催化燃烧性能的影响。结果表明,当还原剂浓度为0.1 mol/L、表面活性剂(CTAB)用量为8.53 g/gcat.、表面活性剂浓度为0.1 mol/L、煅烧温度为600℃时,所得催化剂的活性最高,25℃下甲醇催化燃烧的转化率达到52%。而改进一步合成法制备的负载型催化剂Pt/Al2O3具有更高的甲醇催化燃烧活性,25℃下甲醇催化燃烧的转化率为84%。  相似文献   

6.
结合行星式球磨机,采用机械化学法制备Ni-Al2O3催化剂,考察了焙烧温度和焙烧时间对Ni-Al2O3催化剂晶相结构、还原特征、孔道结构和浆态床CO甲烷化性能的影响。通过XRD、H2-TPR、BET、XPS和TPH等方法对反应前后催化剂进行表征。结果表明,焙烧温度从350℃升高到700℃,活性前体NiO仍在载体表面高度分散,催化剂还原峰温向高温方向偏移。其中,450℃条件下焙烧所获得的cat-450试样比表面积最大,为350 m2/g。评价结果显示,焙烧温度从350℃升高到700℃,CO转化率、CH4选择性和收率均呈先升高后降低的趋势,于450℃达到最大值,分别为97.8%、88.2%和86.2%。另外,焙烧时间对催化剂的还原性能影响较小,对载体Al2O3的晶相结构有一定影响。随焙烧时间延长,CO转化率稍有降低,而后增大;焙烧时间为4 h,CH4选择性和收率均较大。  相似文献   

7.
采用浸渍法制备了ZrO2-SiO2复合载体和Ni质量分数为6%的Ni/ZrO2-SiO2催化剂,考察了载体制备时浸渍溶液pH值、焙烧温度和催化剂制备时的焙烧温度对Ni/ZrO2-SiO2催化剂煤气甲烷化反应性能的影响。采用X射线衍射、程序升温还原和扫描电子显微镜等方法对催化剂进行了表征。结果表明,载体浸渍溶液pH值为8.0~9.0, 载体焙烧温度为550 ℃,催化剂焙烧温度为450 ℃时,Ni/ZrO2-SiO2催化剂在煤气甲烷化反应中显示了最优的催化性能,CO转化率100%,CO2转化率1.8%,CH4生成速率16.6 mmol/(h·g)。进一步表征发现,制备ZrO2-SiO2复合载体时,增大浸渍溶液的pH值有利于形成粒径较小的亚稳态四方晶相ZrO2,可见四方晶相ZrO2更有利于甲烷化反应;载体焙烧温度会影响到NiO粒径的大小和其在催化剂表面的分散,温度过高和过低都会导致NiO粒径大小的不适宜以及分散性的降低;催化剂焙烧温度过高则会导致NiO与载体间的相互作用减弱,NiO分散性降低。  相似文献   

8.
CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响   总被引:1,自引:0,他引:1  
采用水热合成法制备了船形、扁球形及纳米片CeO2-MnOx复合氧化物。并运用低温N2吸脱附、XRD、SEM、TEM、H2-TPR、拉曼光谱、XPS等表征技术对不同形貌CeO2-MnOx复合氧化物的结构与其低浓度CH4催化燃烧反应性能之间的关系进行了关联。结果表明,CeO2-MnOx复合氧化物的形貌与其催化性能密切相关。其中,扁球形CeO2-MnOx复合氧化物的氧空位、Ce3+含量及表面吸附活性氧物种最多,其CH4催化燃烧反应活性最高,540℃时,可将CH4完全转化;其次是船形CeO2-MnOx复合氧化物催化剂,540℃时其CH4转化率为94.05%;与前两者相比,纳米片CeO2-MnOx复合氧化物催化剂的氧空位及表面吸附活性氧物种较少,活性较差,相同反应温度下,其CH4转化率仅为89.68%。  相似文献   

9.
本研究采用溶胶凝胶法,通过调变镧钴比合成了一种纳米新型钙钛矿类催化剂。利用物理吸附、ICP、XRD、H2-TPR、O2-TPD和XPS等技术对催化剂进行了表征,并对其在乏风甲烷氧化燃烧中的催化性能进行了研究。结果表明,高分散性的Co3O4纳米颗粒有利于甲烷的低温活化,且催化剂中镧钴钙钛矿体相可提供大量的晶格氧,促进高温下甲烷的催化燃烧速率和催化剂的高温稳定性。通过调变镧钴比例,可有效调变催化剂中Co3O4纳米颗粒的分散状态,进而实现催化剂低温活性和高温稳定性的有效统一。当La/Co比为0.9时,在空速为30000 mL/(gcat·h)的条件下,La0.9CoO3钙钛矿催化剂的甲烷起燃温度为382℃;稳定运行72 h后,甲烷转化率保持在95%以上。这些结果为今后开发低成本、高活性和高稳定性的甲烷燃烧催化剂提供了参考。  相似文献   

10.
Ni-Mg-ZrO2催化剂上煤层甲烷三重整制合成气   总被引:2,自引:0,他引:2  
采用共沉淀法制备Ni-ZrO2和Ni-Mg-ZrO2催化剂,用BET、XRD、H2-TPR、CO2-TPD等技术对催化剂进行了表征。采用固定床流动反应装置,研究了催化剂在煤层甲烷三重整制合成气反应中的催化性能;考察了反应温度和原料气体组成对反应的影响。实验结果表明,Ni-Mg-ZrO2催化剂在反应温度800℃、常压、空速为30 000 mL/(g·h)、CH4/CO2/H2O/O2/N2=1.0/0.45/0.45/0.1/0.4的条件下,CH4转化率为99%,CO2转化率为65%左右,生成合成气H2/CO体积比为1.5,并在58 h的实验中催化剂活性和稳定性良好。这主要归因于催化剂中金属和载体之间的强相互作用、催化剂的高热稳定性和强碱性。此外,较高的反应温度有利于甲烷三重整反应的进行;通过调节原料气组成,可以获得不同H2/CO体积比的合成气。  相似文献   

11.
制备了系列甲烷化学链燃烧用CeO2/Co3O4复合氧载体,采用XRD、H2-TPR、甲烷程序升温和恒温反应对氧载体进行了表征与评价。研究了不同CeO2的负载量对复合氧载体的结构、氧化还原性、产物选择性的影响。结果表明,氧化铈的添加不仅降低了氧载体的初始反应温度,还延长了有效反应时间,但铈添加量过高会降低产物CO2选择性,使甲烷向部分氧化进行。CeO2(30%)/Co3O4氧载体在650 ℃经20次循环后甲烷转化率和CO2选择性均未明显降低,表现出较高的活性和化学链循环稳定性。  相似文献   

12.
利用介质阻挡放电等离子体法制备了5Ni-5La/SiO2催化剂,并用于甲烷干重整反应.在常压, 700℃,空速为4.8×104 mL·g-1·h-1时,等离子体法所制催化剂催化甲烷干重整反应的CH4和CO2的转化率分别为81.2%和88.4%,且在30 h内保持稳定;而传统催化剂的CH4和CO2初始转化率分别为81%和88.4%, 30 h后下降到58.8%和68.6%.研究结果表明,介质阻挡放电等离子体法制备的催化剂具有更高的分散性和更强的金属与La2O3的相互作用.等离子体处理增加了Ni周围的电子密度,增强了CO2在催化剂表面的吸附能力和活化能力,促进了HCOO-中间体的生成,有利于反应正向进行.  相似文献   

13.
采用溶胶凝胶法制备了一系列不同TiO2含量的TiO2-Al2O3复合载体,并通过浸渍法制备了NiO/TiO2-Al2O3催化剂。分别考察了不同TiO2含量的NiO/TiO2-Al2O3催化剂及反应温度对CO甲烷化催化性能的影响。实验结果表明,当复合载体中TiO2质量分数为30%,反应温度为350~450 ℃时,催化剂催化活性较高。利用N2吸附-脱附(BET)、X射线衍射(XRD)及H2程序升温还原(H2-TPR)等手段对催化剂物化性能进行了表征。结果表明,加入适量的TiO2能抑制镍铝尖晶石NiAl2O4物种的生成,改善NiO的表面分散性能,避免大晶粒NiO的形成,也改善了催化剂的还原性能,从而提高催化剂的CO甲烷化活性。  相似文献   

14.
采用普通浸渍和超声改性的方法分别制备了CuO/Al2O3-MgO催化剂,用于超低浓度甲烷的催化燃烧,并利用SEM、XRD、XPS、H2-TPR等技术对催化剂进行表征,研究了超声改性作用对催化剂的结构和性能的影响.结果表明,与普通浸渍法制备的催化剂相比,在超声改性的CuO/Al2O3-MgO催化剂上,甲烷的转化率得到提高,燃烧特征温度降低.随着超声时间的延长和超声功率的增加,催化剂的催化活性均呈现先增大后减小的趋势;催化剂制备的最佳超声工况为功率150 W、时间20 min.超声改性可使催化剂的比表面积和孔容积增大,表面催化活性较高的Cu+浓度增加,活性组分CuO由晶相向非晶相转变、分散度增大,晶粒粒径变小、分布更均匀;这使得甲烷催化燃烧的表观活化能下降、催化剂活性得到增强.  相似文献   

15.
周毛毛  王璞  吴倩  徐壮  郑建东 《合成化学》2018,26(9):691-694
采用共沉淀法,以(NH42CO3为沉淀剂制备钙钛矿型催化剂LaMnxFe1-xO3(x=0, 0.2, 0.4, 0.6, 0.8, 1.0),其结构和性能经XRD、 BET、 H2-TPR、 SEM和TG-DSC表征。以催化甲烷燃烧为目标反应,考察了其催化性能,研究不同量离子掺杂对催化剂性能影响。结果表明:随着Mn离子掺杂量增加,催化剂的比表面积先变大后变小;LaMn0.2Fe0.8O3的比表面积为42.1 m2·g-1,催化活性最好,起燃温度Tl0%为400 ℃,完全转化温度T90%为550 ℃。  相似文献   

16.
采用浆态床反应器,在低温(300~330 ℃)下进行合成气的甲烷化反应.实验中通过共浸渍法(包括含浸-旋蒸法)制备了锆(Zr)修饰的Ni/γ-Al2O3催化剂,并考察其与单一NiO、未掺杂Zr 的Ni/γ-Al2O3催化剂的催化性能差异.研究表明,载体γ-Al2O3的引入能够明显地提高CO的转化率和甲烷的选择性,而Zr的掺杂会进一步提升催化剂的催化活性.在325 ℃,空速为4 200 mL·g-1·h-1时,CO的转化率可以达到86.41%,甲烷选择性为90.53%.催化剂的表征结果表明,Zr的添加促进了Ni在催化剂表面的分散、减弱了活性Ni与载体的相互作用,抑制了低甲烷化活性的NiAl2O4的生成,使得催化剂的反应性能得到较大提高.  相似文献   

17.
徐壮  王旭君  周毛毛  郑建东 《合成化学》2018,26(11):836-839
采用共沉淀法制备单钙钛矿型催化剂LaFe1-xNixO3(x=0, 0.2, 0.4, 0.6, 0.8, 1.0)系列催化剂,其结构和性能经XRD、 BET、 H2-TPR和TG-DSC。以催化甲烷燃烧为目标反应,考察不同Ni2+掺杂量对催化活性的影响。结果表明:不同掺杂量的Ni2+对该系列催化剂性能影响较大,催化活性均呈现先变大后变小的趋势,其中LaFe0.6Ni0.4O3催化剂的比表面积为13.4 m2·g-1,催化活性最好,起燃温度T10%为402 ℃,完全转化温度T90%为542 ℃。  相似文献   

18.
通过改变水热法条件合成了不同形貌CeO2载体(棒状CeO2-R、立方体CeO2-C和多面体CeO2-P),并用浸渍法制备了Ni3Fe/CeO2催化剂,继而研究了不同载体形貌Ni3Fe/CeO2催化剂对其甲烷干重整反应性能的影响。采用X射线衍射、N2吸附-脱附、透射电镜、拉曼光谱、X射线光电子能谱、热重等对反应前后催化剂结构进行表征。结果表明,Ni3Fe/CeO2-R具有较大比表面积和较高的氧空位浓度,在甲烷干重整反应中表现出了优异的催化反应活性。800℃时,CH4和CO2的转化率分别为82%和91%,且反应10 h性能稳定并且其积炭石墨化程度较低。同时,通过CeO2-R载体氧空位对CO2活化,有效抑制了对亲氧性Fe物种的过度氧化行为,反应前后催化剂Ni...  相似文献   

19.
煤化学链燃烧Fe2O3载氧体的反应性研究   总被引:4,自引:2,他引:2  
利用流化床反应器并以水蒸气作为气化-流化介质,研究了温度、反应时间、循环数对Fe2O3载氧体反应性的影响。实验表明,载氧体与煤气化产物的反应性随温度升高而增强,且温度越高,反应受化学反应控制时间越短。当温度高于900℃时,煤中碳转化为CO2的比率大于90%,载氧体体现了很好的反应性,但反应温度低于850℃时,比率小于75%。反应温度900℃时,CO2干基浓度随循环数而逐渐降低,CO、CH4浓度增加,且CH4浓度值大于CO。利用XRD、SEM分析了固体反应产物成分与微观形态结构。分析表明,Fe2O3的还原产物为Fe3O4,载氧体颗粒随循环数增加而逐渐烧结。  相似文献   

20.
采用共沉淀法并通过改变焙烧温度制备了一系列具有不同晶相结构的La2Zr2O7催化剂,在微型固定床反应器上评价其甲烷氧化偶联反应性能,并利用XRD、Raman、CO2-TPD、XPS等表征手段,探究催化剂的物相结构、表面碱性以及表面氧物种的变化规律。结果表明,随着焙烧温度从700℃逐渐升高到1200℃,La2Zr2O7催化剂结晶度不断提高,晶相发生明显变化,从无定形结构逐渐向缺陷萤石结构过渡,最终转变成烧绿石结构。焙烧温度提高促使La2Zr2O7晶相转变过程中,催化剂表面的碱性强度减弱,中等碱性位数量以及具有催化活性的表面氧物种O22-和O2-的相对含量不断减少,致使催化剂的CH4转化率和C2+选择性不断降低。其中,无定形LZO-CP-700催化剂表现出最佳的甲烷氧化偶联反应性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号