首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The latest progress of using carbon nanotubes (CNTs) for in vivo cancer nanotechnology is reviewed. CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications. In vivo behaviors and toxicology studies of CNTs are summarized, suggesting no significant toxicity of well functionalized CNTs to the treated mice. Owing to their unique chemical and physical properties, CNTs, especially single-walled carbon nanotubes (SWNTs), have been widely used for various modalities of in vivo cancer treatment and imaging. Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.  相似文献   

2.
Various proteins adsorb spontaneously on the sidewalls of acid-oxidized single-walled carbon nanotubes. This simple nonspecific binding scheme can be used to afford noncovalent protein-nanotube conjugates. The proteins are found to be readily transported inside various mammalian cells with nanotubes acting as the transporter via the endocytosis pathway. Once released from the endosomes, the internalized protein-nanotube conjugates can enter into the cytoplasm of cells and perform biological functions, evidenced by apoptosis induction by transported cytochrome c. Carbon nanotubes represent a new class of molecular transporters potentially useful for future in vitro and in vivo protein delivery applications.  相似文献   

3.
Carbon nanomaterials such as multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO) have been functionalized by highly hydrophilic and biocompatible poly(vinyl alcohol) (PVA) for loading and delivery of an anticancer drug, camptothecin (CPT). For the first time, CPT was loaded onto MWCNT-PVA and GO-PVA through π-π interactions and its capability to kill human breast and skin cancer cells was investigated.  相似文献   

4.
A simple strategy for the fabrication of multiwalled carbon nanotubes (MWNTs)–nanocrystal (NC) heterostructures is shown. Different nanoparticles can be covalently coupled to functionalized carbon nanotubes (CNTs) in a uniform and controllable manner. MWNTs have been functionalized by a polymer wrapping—technique that is non-invasive, and does not introduce defects to the structure of CNTs; the polymer is noncovalently adsorbed on the MWNT's surface. Moreover, this method ensures good dispersion and high stability in any commonly used organic or inorganic solvent. In this manner, our strategy allows the attachment of various colloidal nanoparticles to CNTs, independent of their surface properties, i.e. hydrophilic or hydrophobic.  相似文献   

5.
Carbon nanotubes (CNTs) constitute a class of nanomaterials that possess characteristics suitable for a variety of possible applications. Their compatibility with aqueous environments has been made possible by the chemical functionalization of their surface, allowing for exploration of their interactions with biological components including mammalian cells. Functionalized CNTs (f-CNTs) are being intensively explored in advanced biotechnological applications ranging from molecular biosensors to cellular growth substrates. We have been exploring the potential of f-CNTs as delivery vehicles of biologically active molecules in view of possible biomedical applications, including vaccination and gene delivery. Recently we reported the capability of ammonium-functionalized single-walled CNTs to penetrate human and murine cells and facilitate the delivery of plasmid DNA leading to expression of marker genes. To optimize f-CNTs as gene delivery vehicles, it is essential to characterize their interactions with DNA. In the present report, we study the interactions of three types of f-CNTs, ammonium-functionalized single-walled and multiwalled carbon nanotubes (SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon nanotubes (SWNT-Lys-NH3+), with plasmid DNA. Nanotube-DNA complexes were analyzed by scanning electron microscopy, surface plasmon resonance, PicoGreen dye exclusion, and agarose gel shift assay. The results indicate that all three types of cationic carbon nanotubes are able to condense DNA to varying degrees, indicating that both nanotube surface area and charge density are critical parameters that determine the interaction and electrostatic complex formation between f-CNTs with DNA. All three different f-CNT types in this study exhibited upregulation of marker gene expression over naked DNA using a mammalian (human) cell line. Differences in the levels of gene expression were correlated with the structural and biophysical data obtained for the f-CNT:DNA complexes to suggest that large surface area leading to very efficient DNA condensation is not necessary for effective gene transfer. However, it will require further investigation to determine whether the degree of binding and tight association between DNA and nanotubes is a desirable trait to increase gene expression efficiency in vitro or in vivo. This study constitutes the first thorough investigation into the physicochemical interactions between cationic functionalized carbon nanotubes and DNA toward construction of carbon nanotube-based gene transfer vector systems.  相似文献   

6.
Emissive europium hydroxide nanorods (ENR) (20 nm x 500 nm) functionalized by a surface coating of chromophore-containing organically modified silicate (ORMOSIL) layer, have been synthesized and characterized by high-resolution transmission electron microscopy (TEM). Low-temperature photophysical characterization of the functionalized nanorods (FENR) demonstrated a strong red 5D0 luminescence both in solid and in suspended solutions. Potentials of this nanorod material for live cell imaging have also been explored. Both the bare and functionalized nanorods are able to enter living human cells with no discernible cytotoxicity. Chromophore-to-Eu3+ energy-transfer in the functionalized nanorods enables staining of the cytoplasm of living human cells. This is confirmed by costaining with fluorescent dextran. The red chromophore-sensitized luminescence from the internalized nanorods in live human lung carcinoma cells (A549) can be observed by confocal microscopy 2 h after loading and reaches maximal emission after 24 h.  相似文献   

7.
Gold nanoparticles were grown on single‐walled carbon nanotubes (SWNTs) coated with a thiol‐functionalized ionic liquid resulting in the formation of core‐shell structures referred to as SWNT‐IL‐Au nanohybrid materials. The nanohybrid materials were characterized by high‐resolution transmission electron microscopy (HR‐TEM), Raman‐, and UV/Vis absorption spectroscopy. The nanohybrid materials were found to enter lysosomes in HeLa cells and show negligible cytotoxicity. Interestingly, they have an enhanced NIR absorption that is effectively transferred into heat to cause localized hyperthermia, resulting in rapid cell death; overall, the material appears to have excellent properties for photothermal therapeutic applications.  相似文献   

8.
The use of carbon nanotubes in materials applications has been slowed due to nanotube insolubility and their incompatibility with polymers. We recently developed two protocols to overcome the insoluble nature of carbon nanotubes by affixing large amounts of addends to the nanotube sidewalls. Both processes involve reactions with aryl diazonium species. First, solvent-free functionalization techniques remove the need for any solvent during the functionalization step. This delivers functionalized carbon nanotubes with increased solubility in organic solvents and processibility in polymeric blends. Additionally, the solvent-free functionalization process can be done on large scales, thereby paving the way for use in bulk applications such as in structural materials development. The second methodology involves the functionalization of carbon nanotubes that are first dispersed as individual tubes in surfactants within aqueous media. The functionalization then ensues to afford heavily functionalized nanotubes that do not re-rope. They remain as individuals in organic solvents giving enormous increases in solubility. This protocol yields the highest degree of functionalization we have obtained thus far-up to one in nine carbon atoms on the nanotube has an organic addend. The proper characterization and solubility determinations on nanotubes are critical; therefore, this topic is discussed in detail.  相似文献   

9.
Understanding the behavior of radioactive nuclide elements in different environmental conditions is an active area of research. In this work, we have investigated the possible interaction mechanism between carbon nanotubes and uranyl using density functional theory. It is shown that functionalized carbon nanotubes can be used to bind uranyl ions much more efficiently as compared to their unfunctionalized counterpart. The uranyl binding energies are sensitive to the nature of the functional groups rather than the carbon nanotube itself. The binding takes place preferably at the functionalized sites, although pH could determine the strength of uranyl binding. Our predicted results correlate well with the recent experimental uranyl sorption studies on carbon nanotubes. These finding are new and can open up a new era for actinide speciation and separation chemistry using carbon nanotubes.  相似文献   

10.
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (MPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium–tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet–visible–near-infrared spectroscopy (UV–vis–NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV–vis–NIR. SEM provides the morphology of the multilayer films. The PtNPs containing multilayer films exhibit high electrocatalytic activity for the reduction of dioxygen. Furthermore, the electrocatalytic activity of the films could be further tailored by simply choosing different cycles in the LBL process. This assembling method for polyelectrolyte functionalized carbon nanotubes and nanoparticles introduces new opportunities for the incorporation of various functionalities into nanotube devices, which, in turn, opens up the possibility of building more complex multicomponent nanostructures.  相似文献   

11.
"An in situ polymerization process was used to prepare poly (methyl methacrylate) (PMMA)-functionalized carboxyl multi-walled carbon nanotubes using carboxylate carbon nanotubes and methyl methacrylate as reactants and benzoyl peroxide as an initiator agent. The functionalized multi-walled carbon nanotubes were characterized using transmission electron microscope, scanning electron microscope, nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman. The results indicate that the PMMA chains are covalently linked with the surface of carboxylate carbon nanotubes. The surface morphology is controlled by the content of carboxylate carbon nanotubes in the reactants. The PMMA functionalized multi-walled carbon nanotubes are soluble in deuterated chloroform. The storage modulus and tanffi magnitude increase as the content of CCNTs increases up to 0.3%."  相似文献   

12.
Having a strong electron-withdrawing ability, poly(diallyldimethylammonium chloride) (PDDA) was used to create net positive charge for carbon atoms in the nanotube carbon plane via intermolecular charge transfer. The resultant PDDA functionalized/adsorbed carbon nanotubes (CNTs), either in an aligned or nonaligned form, were demonstrated to act as metal-free catalysts for oxygen reduction reaction (ORR) in fuel cells with similar performance as Pt catalysts. The adsorption-induced intermolecular charge-transfer should provide a general approach to various carbon-based efficient metal-free ORR catalysts for oxygen reduction in fuel cells, and even new catalytic materials for applications beyond fuel cells.  相似文献   

13.
This paper is focused on the synthesis and characterization of a novel hybrid material based on cisplatin and docetaxel-loaded functionalized simultanously carbon nanotubes able to be used in cancer therapy as drug delivery system with controlled toxicity. This material was physico-chemically investigated by determining the structure, as evidenced by Fourier transform infrared (FTIR) spectroscopy, transmission electronmicroscopy (TEM) and its stability was studied with the aid of thermogravimetric analysis (TGA). The amount of platinum ions released into the solution of simulated body fluid (SBF) was highlighted by coupled plasma mass spectrometry (ICP-MS). Toxicology experiments were performed with MDA-MB 231 breast cancer epithelial cells. The performance of the new drug delivery hybrid material was compared with functionalised carbon nanotubes with therapeutic agents functionalized with a single therapeutic agent.   相似文献   

14.
Single-walled carbon nanotubes were functionalized along their sidewalls with phenol groups using the 1,3-dipolar cycloaddition reaction. These phenols could be further derivatized with 2-bromoisobutyryl bromide, resulting in the attachment of atom transfer radical polymerization initiators to the sidewalls of the nanotubes. These initiators were found to be active in the polymerization of methyl methacrylate and tert-butyl acrylate from the surface of the nanotubes. However, the polymerizations were not controlled, leading to the production of high molecular weight polymers with relatively large polydispersities. The resulting polymerized nanotubes were analyzed by IR, Raman spectroscopy, DSC, TEM, and AFM. The nanotubes functionalized with poly(methyl methacrylate) were found to be insoluble, while those functionalized with poly(tert-butyl acrylate) were soluble in a variety of organic solvents. The tert-butyl groups of these appended polymers could also be removed to produce nanotubes functionalized with poly(acrylic acid), resulting in structures that are soluble in aqueous solutions.  相似文献   

15.
Phenoxy acid herbicides are widely used herbicides that play an important role in improving the yield and quality of crops. However, some research has shown that this kind of herbicide is poisonous to human and animals. In this study, a rapid and sensitive method was developed for the detection of seven phenoxy acid herbicides in water samples based on magnetic solid‐phase extraction followed by liquid chromatography and tandem mass spectrometry. Magnetic amino‐functionalized multiwalled carbon nanotubes were prepared by mixing bare magnetic Fe3O4 nanoparticles with commercial amino‐functionalized multiwalled carbon nanotubes in water. Then the amino‐functionalized multiwalled carbon nanotubes were used to enrich phenoxy acid herbicides from water samples based on hydrophobic and ionic interactions. The effects of experimental variables on the extraction efficiency have been studied in detail. Under the optimized conditions, the method validation was performed. Good linearities for seven phenoxy acid herbicides were obtained with squared regression coefficients ranging from 0.9971 to 0.9989. The limits of detection ranged from 0.01 to 0.02 μg/L. The method recoveries of seven phenoxy acid herbicides spiked at three concentration levels in a blank sample were from 92.3 to 103.2%, with inter‐ and intraday relative standard deviations less than 12.6%.  相似文献   

16.
Understanding of oxidative processes such as solution-phase ozonolysis in multiwalled carbon nanotubes (MWNTs) is of fundamental importance in devising applications of these tubes as components in composite materials, as well as for development of cutting and filling protocols. We present here an evaluation of various spectroscopic tools to study the structure and composition of functionalized nanotubes. We demonstrate near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for studying the surface chemistry of carbon nanotubes.  相似文献   

17.
卟啉修饰碳纳米管研究进展   总被引:2,自引:0,他引:2  
碳纳米管作为一类新型纳米材料具有许多独特的物理、化学性质,卟啉在可见光区具有广泛吸收.并可作为构筑分子体系的光捕捉单元.卟啉修饰的碳纳米管有望在生命、信息、材料科学等许多相关学科得到应用.本文综述了卟啉修饰碳纳米管的方法、影响因素,展望了其在光电领域的应用前景.  相似文献   

18.
The systemic toxicity of anticancer drugs regularly restricts the use of conventional chemotherapy to treat cancer. In this study, the limitations overcome by profitably fabricating a multifunctional nanocarrier system to carry the anticancer drug into the specific location of the cancer cells. The polyethylene glycol (PEG) was functionalized in the carboxylated multiwalled carbon nanotubes (MWCNT-COOH) through an esterification reaction (MWCNT-PEG). The targeting ligand of folic acid (FA) was covalently bonded with hyperbranched poly-L-lysine (HBPLL) using adipic acid (AA) as a cross-linking agent. Doxorubicin (DOX), an anticancer drug, was effectively loaded on MWCNT-PEG-AA-HBPLL-FA carrier loading, and in-vitro drug release was investigated by UV–Vis spectrophotometer. The chemical functionalization, morphological properties, crystalline nature, surface charge, and thermal stability of the synthesized materials were studied by FT-IR, FE-SEM, HR-TEM, DLS, and TGA techniques. In-vitro cytotoxicity and anticancer properties of DOX-loaded nanocarrier were studied in human liver cancer (HepG2) cells and human embryonic kidney (HEK293) cells. The activities of caspases (caspase ?3, ?8 & ?9) were analyzed using luminometry. The intrinsic apoptosis pathway proteins (Bcl-2 & BAX) were determined by western blot and RT-PCR analysis. The synthesized DOX-loaded nanocarriers exhibited increased cytotoxicity and apoptosis in liver HepG2 cells. The results suggest that the DOX-loaded nanocarrier possesses strong anticancer properties and could be an applicable and potential drug carrier for liver cancer chemotherapy.  相似文献   

19.
The nano dimensions, graphitic surface chemistry and electronic properties of single walled carbon nanotubes make such a material an ideal candidate for chemical or biochemical sensing. Carbon nanotubes can be nondestructively oxidized along their sidewalls or ends and subsequently covalently functionalized with colloidal particles or polyamine dendrimers via carboxylate chemistry. Proteins adsorb individually, strongly and noncovalently along nanotube lengths. These nanotube-protein conjugates are readily characterized at the molecular level by atomic force microscopy. Several metalloproteins and enzymes have been bound on both the sidewalls and termini of single walled carbon nanotubes. Though coupling can be controlled, to a degree, through variation of tube oxidative pre-activation chemistry, careful control experiments and observations made by atomic force microscopy suggest that immobilization is strong, physical and does not require covalent bonding. Importantly, in terms of possible device applications, protein attachment appears to occur with retention of native biological structure. Nanotube electrodes exhibit useful voltammetric properties with direct electrical communication possible between a redox-active biomolecule and the delocalized pi system of its carbon nanotube support.  相似文献   

20.
Single‐walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid‐state NMR spectroscopy. The uracil‐functionalized SWCNTs are able to self‐assemble into regular nanorings with a diameter of 50–70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil–uracil base‐pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号