首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
碳纳米管是具有一维纳米结构的新型纳米材料,具有许多独特的物理、化学性质.卟啉对可见光具有强烈吸收,其大π共轭体系使其具有良好的电子给予能力,可作为人工光合作用体系的光捕捉单元.将具有电子接受能力的碳纳米管与卟啉结合起来,通过卟啉对碳纳米管进行共价和非共价修饰,可以改善碳纳米管在溶剂中的溶解分散性能,同时实现卟啉和碳纳米管之间有效的电子传递,形成具有独特光电和光学性质卟啉-碳纳米管复合物.该类物质具备良好的应用前景,是碳纳米管和卟啉研究中的热点.就近年来该类复合物的构筑方法及性质研究等方面的进展进行了综述.  相似文献   

2.
从问题解决的视角介绍碳纳米管的性质和在应用方面存在的问题。重点介绍卟啉修饰的碳纳米管的优势以及卟啉修饰碳纳米管的方法、应用和近期的研究进展。  相似文献   

3.
碳纳米管(Carbon Nanotubes,简称CNTs)独特的一维管状分子结构赋予其许多优良的物化性能。具有平面π共轭结构的卟啉分子与CNTs之间存在强烈的相互作用,利用卟啉修饰CNTs,可以通过共价和非共价两条途径实现。卟啉修饰CNTs不仅可以改善CNTs的溶解性能,而且还可以赋予其许多卟啉固有的优良性能。由此构筑的复合物体系在光电、催化、生物医用领域均显示出广阔的应用前景。本文系统总结了目前国内外利用卟啉修饰CNTs的相关研究成果,并对未来的研究进行了展望。  相似文献   

4.
合成了meso-四(4-磺酸钠苯基)卟啉及其Zn, Cu, Mn配合物, 通过共价与非共价的方法将其分别修饰到多壁碳纳米管上. 采用红外光谱对产物结构进行表征|通过透射电镜(TEM)考察了卟啉-多壁碳纳米管复合物的形貌特征|通过紫外光谱、荧光光谱对比分析了两类复合物, 发现在卟啉与多壁碳纳米管之间存在较强的电子效应, 同时发现非共价修饰的卟啉-碳纳米管复合物的荧光淬灭率更高|热重分析(TGA)表明非共价的卟啉-碳纳米管复合物中卟啉的含量比较高. 对修饰后的复合物进行了溶解性测试, 结果表明共价修饰的复合物在水中有较好的溶解性和分散性.  相似文献   

5.
卟啉和酞菁修饰的单壁碳纳米管的合成及光谱性质   总被引:1,自引:0,他引:1  
利用5-(4-氨基苯基)-10,15,20-三(3,5-二辛氧基苯基)卟啉和2,9,16-三叔丁基-23-氨基锌(Ⅱ)酞菁通过酰胺键连接方式同时对单壁碳纳米管进行共价修饰, 通过红外光谱、拉曼光谱、X射线光电子能谱和透射电镜对所得碳纳米管复合物进行了表征, 证实了其结构. 紫外-可见吸收光谱和荧光光谱分析表明, 光活性分子卟啉和酞菁均与单壁碳纳米管之间存在较强的电子效应. 经卟啉和酞菁共同修饰的单壁碳纳米管复合物比卟啉和酞菁单独修饰的碳纳米管复合物的吸光范围更宽, 而且分散性较好(309 mg/L), 是潜在的光电转换材料.  相似文献   

6.
采用新方法合成了meso-四(4-酰肼基苯基)卟啉及其金属配合物, 通过化学键将酰肼卟啉上的酰肼基与活化的多壁碳纳米管(MWNTs)发生酰胺化反应, 从而得到卟啉共价化学修饰的多壁碳纳米管复合物; 利用卟啉环上的π电子与多壁碳纳米管管壁上的π电子通过π-π堆积效应, 得到卟啉非共价化学修饰的碳纳米管复合物. 通过红外光谱、紫外和荧光光谱对比分析, 发现在卟啉与碳纳米管间存在强烈的电子效应, 且非共价修饰的卟啉-碳纳米管复合物的荧光猝灭率更高.  相似文献   

7.
合成了5-(4-羟基苯基)-10,15,20-三苯基卟啉锌配合物, 与活化的多壁碳纳米管(MWNT)发生酯化反应, 从而得到金属卟啉有机共价化学修饰的多壁碳纳米管复合物; 利用金属卟啉环上的π电子与多壁碳纳米管管壁上的π电子通过π-π堆积效应, 得到金属卟啉有机非共价修饰的多壁碳纳米管复合物. 通过透射电镜(TEM)考察了金属卟啉-多壁碳纳米管复合物的形貌特征; 通过红外光谱对产物的化学结构进行了表征; 通过紫外光谱、荧光光谱和热失重分析(TGA)对比分析了两类复合物, 发现非共价修饰的金属卟啉-碳纳米管复合物的荧光淬灭率更高, 非共价修饰的金属卟啉-碳纳米管复合物中卟啉的含量比较高.  相似文献   

8.
合成了5-(4-羟基苯基)-10,15,20-三苯基卟啉锌配合物,与活化的多壁碳纳米管(MWNT)发生酯化反应,从而得到金属卟啉有机共价化学修饰的多壁碳纳米管复合物;利用金属卟啉环上的π电子与多壁碳纳米管管壁上的π电子通过π-π堆积效应,得到金属卟啉有机非共价修饰的多壁碳纳米管复合物.通过透射电镜(TEM)考察了金属卟啉-多壁碳纳米管复合物的形貌特征;通过红外光谱对产物的化学结构进行了表征;通过紫外光谱、荧光光谱和热失重分析(TGA)对比分析了两类复合物,发现非共价修饰的金属卟啉-碳纳米管复合物的荧光淬灭率更高,非共价修饰的金属卟啉-碳纳米管复合物中卟啉的含量比较高.  相似文献   

9.
聚丙烯腈电纺纤维的功能化   总被引:1,自引:0,他引:1  
聚丙烯腈是一种性能优异、应用广泛的成纤聚合物,静电纺丝技术则可用于制备聚丙烯腈纳米纤维,本文对聚丙烯腈纳米纤维的功能化进行了综述.通过表面仿生修饰、碳纳米管填充等方法改性的聚丙烯腈电纺纤维被尝试作为酶固定化的载体材料,在显著提高载酶量的同时,能大幅度提高酶活性.糖基功能化的纳米纤维对特定的蛋白质具有较高的识别效率,可望用于蛋白质的分离与纯化.卟啉化的聚丙烯腈电纺纤维则在显示出荧光特性的同时,在催化、传感等方面具有潜在的应用前景.  相似文献   

10.
单壁碳纳米管的结构修饰   总被引:7,自引:0,他引:7  
朱为宏  朱世琴  田禾 《有机化学》2002,22(12):964-973
由于单壁碳纳米管具有独特的结构、电学及机械等性能,可望在许多新领域得 到应用,已引起广泛的关注。但由于单壁碳纳米管不溶于水和常见的有机溶剂,极 大地制约了其应用性能的研究。随着单壁碳纳米管制备技术的不断完善,其研究方 向已开始转向结构修饰及应用性能的研究。主要介绍近年来单壁碳纳米管结构修饰 方面的最新发展状况,重点讨论化学功能化及物理吸附。  相似文献   

11.
We present a study of tetraphenylporphyrin composites formed with single-walled carbon nanotubes (SWNTs). Stable porphyrin/SWNT composite solutions were obtained by non-covalent bonding between the carbon nanotubes and conjugated tetraphenylporphyrin molecules. Transmission electron microscopy reveals porphyrin molecules adhering to the nanotube surface. We report on the first complete linear and nonlinear optical characterization of these nanocomposite materials. The composite solutions were found to be superior optical limiters to nanotubes alone, and to all porphyrin systems studied, including metalloporphyrins.  相似文献   

12.
Tetrakis(4-hydroxylphenyl)porphyrin (THPP) modified multi-walled carbon nanotubes were synthesized. Meanwhile, THPP or tetrakis(4-hydroxylphenyl)porphyrin cobalt(II) (CoTHPP) was introduced on the surface of carboxyl-functionalized multi-walled carbon nanotubes (MWNTs-COOH) and amino-functionalized multi-walled carbon nanotubes (MWNTs-NH2) to form a series of complexes, respectively. TEM images indicated that the assemblies were made of the short chipping carbon nanotubes and the long assembled carbon nanotubes. The UV-vis spectra and fluorescence spectra were used to investigate the properties of the porphyrins assembled on the carbon nanotubes.  相似文献   

13.
Electrodes modified with iron porphyrin and carbon nanotubes (FeP–CNTs) were prepared and used for CO2 electroreduction. The adsorption of iron porphyrin onto the multiwalled carbon nanotubes was characterized by scanning electron microscopy and ultraviolet and visible spectroscopy. The electrochemical properties of the modified electrodes for CO2 reduction were investigated by cyclic voltammetry and CO2 electrolysis. The FeP–CNT electrodes exhibited less negative cathode potential and higher reaction rate than the electrodes modified only with iron porphyrin or carbon nanotubes. A mechanism of the synergistic catalysis was proposed and studied by electrochemical impedance spectroscopy and electron paramagnetic resonance. The direct electron transfer between iron porphyrin and carbon nanotubes was examined. The current study shed light on the mechanism of synergistic catalysis between CNTs and metalloporphyrin, and the iron porphyrin–CNT-modified electrodes showed great potential in the efficient CO2 electroreduction.  相似文献   

14.
The hydroxide of meso-tetraphenylporphyrin derivatives functionalized carbon nanotubes (CNTs) was fabricated in our research to explore the interaction between porphyrin and explosive. It was turned out that in the formation of grid porphyrin film, carbon nanotubes as a cruciul base materials promoted the electron transfer rate. Most of important, the results also showed that the electrochemical response was enhanced through increasing the number of -OH substitution in porphyrin. Such information provides the platform for a practical strategy for rational design of the sensor of explosives.  相似文献   

15.
Single- and multiwalled carbon nanotubes have been covalently functionalized with free-base porphyrin. The quantity of porphyrin linked to the surface was determined from thermogravimetric and UV-vis analysis. A reversible protonation equilibrium between the attached porphyrin and the residual acid groups of the carbon nanotubes has been identified. Steady-state fluorescence emission spectrum of the solutions of porphyrin-linked carbon nanotubes shows that the porphyrins act as energy absorbing and electron transferring antennae, and the carbon nanotubes act as efficient electron acceptors. The porphyrin-linked carbon nanotubes show 95-100% emission quenching, indicating a fast photoinduced electron transfer.  相似文献   

16.
碳纳米管与碳纤维具有优异的力学、电学等性能,广泛用做复合材料增强体,但目前碳纳米管/碳纤维/环氧树脂复合材料的研究具有一定的局限性,只考虑了两相材料间的作用,即仅对单一相进行处理而忽略了另一相的改性。本文从碳纳米管/碳纤维协同增强环氧树脂基体复合材料的思路入手,结合自己的研究成果,综述了国内外相关研究进展。从研究结果可以看出,将三相材料之间完全有效地联系起来,发挥三者间的协同效应,复合材料的性能可以发生质的飞跃。  相似文献   

17.
The photophysical, electrochemical, and self-assembly properties of a novel triply fused Zn(II)-porphyrin trimer were investigated and compared to the properties of a triply fused porphyrin dimer and the analogous monomer. The trimer exhibited significantly red-shifted absorption bands relative to the corresponding monomer and dimer. Electrochemical investigations indicated a clear trend in redox properties amongst the three porphyrin structures, with the lowest oxidation potential and the lowest HOMO-LUMO gap exhibited by the triply fused trimer. This electrochemical behavior is attributed to the extensive pi-electron delocalization in the trimeric structure relative to the monomer and dimer. Additionally, it was found that the trimer forms extremely strong and nearly irreversible supramolecular interactions with single-walled carbon nanotubes (SWNTs), resulting in stable solutions of porphyrin-nanotube complexes in THF. Formation of these complexes required the addition of trifluoroacetic acid (TFA) to the solvent. This allowed the oligomers to make close contact with the nanotubes, enabling the formation of stable supramolecular assemblies. Atomic force microscopy (AFM) was used to observe the supramolecular porphyrin-nanotube complexes and revealed that the porphyrin trimer formed a uniform coating on the SWNTs. Height profiles indicated that nanotube bundles could be exfoliated into either individual tubes or very small bundles by exposure to the porphyrin trimer during sonication.  相似文献   

18.
Nanomaterials are structures with dimensions characteristically much below 100 nm. The unique physical properties (e.g., conductivity, reactivity) have placed these nanomaterials in the forefront of emerging technologies. Significant enhancement of optical, mechanical, electrical, structural, and magnetic properties are commonly found through the use of novel nanomaterials. One of the most exciting classes of nanomaterials is represented by the carbon nanotubes. Carbon nanotubes, including single-wall carbon nanotubes, multi-wall carbon nanotubes, and concentric tubes have been shown to possess superior electronic, thermal, and mechanical properties to be attractive for a wide range of potential applications They sometimes bunch to form “ropes” and show great potential for use as highly sensitive electronic (bio)sensors due to the very small diameter, directly comparable to the size of single analyte molecules and that every single carbon atom is in direct contact with the environment, allowing optimal interaction with nearby molecules. Composite materials based on integration of carbon nanotubes and some other materials to possess properties of the individual components with a synergistic effect have gained growing interest. Materials for such purposes include conducting polymers, redox mediators and metal nanoparticles. These tubes provide the necessary building blocks for electronic circuits and afford new opportunities for chip miniaturization, which can dramatically improve the scaling prospects for the semiconductor technologies and the fabrication of devices, including field-effect transistors and sensors. Carbon nanotubes are one of the ideal materials for the preparation of nanoelectronic devices and nanosensors due to the unique electrical properties, outstanding electrocatalytic properties, high chemical stability and larger specific surface area of nanotubes. Carbon nanotubes are attractive material for supercapacitors due to their unique one-dimensional mesoporous structure, high specific surface area, low resistivity and good chemical stability. Nanoscaled composite materials based on carbon nanotubes have been broadly used due to their high chemical inertness, non-swelling effect, high purity and rigidity. The integration of carbon nanotubes with organics, biomaterials and metal nanoparticles has led to the development of new hybrid materials and sensors. Hybrid nanoscale materials are well established in various processes such as organic and inorganic compounds, nucleic acid detachment, protein separation, and immobilization of enzymes. Those nanostructures can be used as the building blocks for electronics and nanodevices because uniform organic and metal coatings with the small and monodisperse domain sizes are crucial to optimize nanoparticle conductivity and to detect changes in conductivity and absorption induced by analyte adsorption on these surfaces. The highly ordered assembly of zero-dimensional and one-dimensional nanoparticles is not only necessary for making functional devices, but also presents an opportunity to develop novel collective properties.  相似文献   

19.
《Chemphyschem》2003,4(11):1150-1169
Since the discovery of carbon nanotubes by Iijima in 1991, various carbon nanotubes with either a single‐ or multilayered graphene cylinder(s) have been produced, along with their noncarbon counterparts (for example, inorganic and polymer nanotubes). These nanostructured materials often possess size‐dependent properties and show new phenomena related to the nanosize confinement of the charge carriers inside, which leads to the possibility of developing new materials with useful properties and advanced devices with desirable features for a wide range of applications. In particular, carbon nanotubes have been shown to exhibit superior properties attractive for various potential applications, ranging from their use as novel electron emitters in flat‐panel displays to electrodes in electrochemical sensors. For many of the applications, it is highly desirable to have aligned/patterned forms of carbon nanotubes so that their structure/property can be easily assessed and so that they can be effectively incorporated into devices. In this Review, we present an overview on the development of aligned and micropatterned nanotubes, with an emphasis on carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号