首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Luminescence spectra of interwell excitons in GaAs/AlGaAs double quantum wells with electric-field-tilted bands (n-i-n) structures were studied. In these structures the electron and the hole in the interwell exciton are spatially separated between neighboring quantum wells by a narrow AlAs barrier. Under resonant excitation by circularly polarized light the luminescence line of the interwell excitons exhibited appreciable narrowing as their concentration increased and the degree of circular polarization of the photoluminescence increased substantially. Under resonant excitation by linearly polarized light the alignment of the interwell excitons increased as a threshold process with increasing optical pumping. By analyzing time-resolved spectra and the kinetics of the photoluminescence intensity under pulsed excitation it was established that under these conditions the rate of radiative recombination increases substantially. The observed effect occurs at below-critical temperatures and is interpreted in terms of the collective behavior of the interwell excitons. Studies of the luminescence spectra in a magnetic field showed that the collective exciton phase is dielectric and in this phase the interwell excitons retain their individual properties.  相似文献   

2.
We have investigated optically detected cyclotron resonance (ODCR) and ordinary cyclotron resonance (CR) under the same condition, in Ge and Si, which include both high-purity and doped samples. In impact dissociation processes, which are the origin of ODCR, donorbound excitons have larger cross section for impinging electrons than for holes, and conversely, acceptor- bound excitons have larger cross section for holes than for electrons. Moreover, the ratio of impact dissociation cross section for holes to that for electrons varies with the number of excitons bound to an impurity. These phenomena are understood primarily in terms of exchange interaction between impinging carriers and constituents of bound excitons. In addition, it is found that the relative intensity of hole cyclotron resonance against electron resonance is larger in ODCR than in CR. This is understood in terms of exchange interaction by taking the many valley nature of the conduction band into account.  相似文献   

3.
We have studied the collapses and revivals of the exciton intensity in a semiconductor microcavity under the resonant case. It is found that, when the excitons are initially in the number state, the exciton intensity exhibits the periodic oscillation if the dissipation parameters equal zero, but if there exists the dissipation, the damped oscillation appears. Whether there exists the dissipation or does not, the width of oscillation decreases with the increment of the atom numbers. When the excitons are initially in the coherent state, the width of the oscillation decreases with the increment of the dissipation.  相似文献   

4.
We have trapped a gas of long-lifetime, high-mobility excitons in an in-plane harmonic potential. Trapping is an important step toward the goal of a controlled Bose-Einstein condensate of excitons. We show that the repulsive interaction between the excitons plays a dominant role in the behavior of the excitons, in contrast with the weak interactions in atomic gases. We show that under proper conditions the excitons thermalize in the trap to a well-defined equilibrium spatial distribution.  相似文献   

5.
We study exciton states in Zn(Cd)Se/ZnMgSSe quantum wells (QWs) with various degrees of diffusion blurring in the interfaces by the methods of optical spectroscopy. We show that at low temperatures the QW emission spectra are determined by free and neutral donor-bound excitons. Blurring of the heterointerfaces leads to the increase in the energy shift between the emission line maxima of free and bound excitons. We explain the nonlinear dependence of the steady-state photoluminescence intensity on the excitation-power density in terms of the neutralization of charged donors at the photoexcitation of heterostructures. We observed a complex long-time dynamics of the reflection coefficient, evoked by the charge-redistribution processes in the heterostructure, near the QW exciton resonances under the irradiation.  相似文献   

6.
We demonstrate experimental proof of principle for an optoelectronic transistor based on the modulation of exciton flux via gate voltage. The exciton optoelectronic transistor (EXOT) implements electronic operation on photons by using excitons as intermediate media; the intensity of light emitted at the optical output is proportional to the intensity of light at the optical input and is controlled electronically by the gate. We demonstrate a contrast ratio of 30 between an on state and an off state of the EXOT and its operation at speeds greater than 1 GHz. Our studies also demonstrate high-speed control of both the flux and the potential energy of excitons on a time scale much shorter than the exciton lifetime.  相似文献   

7.
Fluorescence spectra due to the free excitons have been studied in CdS at 4.2 K under various excitation levels. It has been found that the triplet-exciton emission intensity relative to the singlet line is enhanced remarkably with the excitation power density. This effect is reasonably explained by the mixing of the singlet with the triplet through the many body interaction. The density of optically generated excitons is determined from the magnetic field dependence of the triplet emission intensity.  相似文献   

8.
We have investigated the polarization and momentum dependence of singlet excitons in pentacene molecular crystals using inelastic electron scattering. Our results demonstrate that both the direction as well as the absolute value of the momentum are decisive for the spectral intensity of these excitons. Possible implications of this observation for a microscopic understanding of excitons in organic molecular crystals are discussed.  相似文献   

9.
有机共轭高分子受光激发或被电荷掺杂后可能会产生各种激发状态的激子,激子的演化过程对有机发光光谱有着至关重要的影响.通过非绝热动力学演化的方法模拟了受光激发后有机高分子中激子驰豫的动力学过程,结果表明高激发态激子不稳定,由于电声耦合作用,高激发态激子会持续向低激发态激子演化,同时,低激发态激子的复合发光会发生红移.稳定的激子复合发光光谱中,基态激子发光强度最大,可高达70-80%;第一激发态激子及其它激发态激子发光强度的总和不超过20%.  相似文献   

10.
Optical properties of star-shaped ZnO nanostructures were studied. The temperature-dependent photoluminescence (PL) was examined up to fourth-order longitudinal optical (LO) phonon assisted emissions of free excitons and confirmed that the nature of the room temperature PL in ZnO is 1-LO phonon assisted emission of free excitons. Low threshold ultraviolet stimulated emissions (SE) were obtained for our powder samples at room temperature. Picosecond time-resolved PL measurements detected a bi-exponential decay behavior which is strongly dependent on the excitation intensity: the slow decay term decreased faster than the fast decay term as the excitation intensity increased and the emission decays were dominated by the fast one. We also found that the emission decays decreased super-linearly before the appearance of the SE. This behavior may be used to deduce the threshold of SE or lasing.  相似文献   

11.
We investigated the absorption and photoluminescence (PL) of J-aggregates of a cyanine dye both in a thin film format and when used as the active layer in a strongly-coupled microcavity. We show that as temperature is reduced, the absorption linewidth of the J-aggregates narrows and shifts to higher energy. When the J-aggregate is placed in a microcavity we find that the energy of the polariton modes also shifts to higher energies as temperature is reduced. We compare the intensity of PL emission from the upper and lower branches at resonance as a function of temperature, and find that it can be described by an activation energy of 25 meV. PL emission spectra at resonance also suggest that uncoupled excitons inside the microcavity populate the upper polariton branch states.  相似文献   

12.
We have measured an extremely long lifetime of 1.5 ms for strain-confined excitons in Ge below 3.2 K. This compares favorably with our predicted radiative lifetime of 2.0 ms in stressed Ge. Above 3.2 K, a rapid decrease in the exciton lifetime is observed with increasing temperature, concurrent with an exponential decrease in the observed luminescence intensity. Three models for thermally-activated loss of strain-confined excitons are considered as possible explanations. Also, the liquid-gas transition is examined by spatial scanning techniques.  相似文献   

13.
Photoluminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructure) containing large-scale random potential fluctuations in the planes of heteroboundaries is studied. The properties of excitons, in which a photoexcited electron and a hole are spatially separated in neighboring quantum wells, were investigated upon variation of the power density of off-resonance laser excitation and temperature (1.5–4.2 K), both under lateral (in the heteroboundary plane) confinement of the excitation region to a few micrometers and without such a limitation (directly from the region of laser-induced photoexcitation focused to a spot not exceeding 30 μ. Under low pumping (with a power smaller than a microwatt), interwell excitons are strongly localized due to small-scale random potential fluctuations and the corresponding photoluminescence line is nonhomogeneously broadened to 2.5–3.0 meV. With increasing pumping power, the narrow line of delocalized excitons with a width of approximately 1 meV emerges in a threshold manner (the intensity of this line increases superlinearly near the threshold with increasing pumping). For a fixed pumping, the intensity of this line decreases linearly upon heating until it completely vanishes from the spectrum. The observed effect is attributed to Bose condensation in a quasi-two-dimensional system of interwell excitons. Within the proposed model, we show that the linear mode in the behavior of the luminescence intensity until its disappearance in the continuum of the photoluminescence spectrum upon a change in temperature is observed only for the condensed part of interwell excitons. At the same time, the luminescence of the above-the-condensate part of excitons is almost insensitive to temperature variations in the temperature range studied.  相似文献   

14.
A series of ZnO films were prepared on the Si (1 0 0) or glass substrate at 773 K under various oxygen pressures by using a laser molecular beam epitaxy system. The microstructure and optical properties were investigated through the X-ray diffraction, Raman spectrometer, scanning electron microscope, ultraviolet–visible spectrophotometer and spectrofluorophotometer. The results showed that ZnO thin film prepared at 1 Pa oxygen pressure displayed the best crystalinity and all ZnO films formed a columnar structure. Meanwhile, all ZnO films exhibited an abrupt absorption edge near the wavelength of 380 nm in transmission spectra. With increasing the oxygen pressure, the transmission intensity changed non-monotonically and reached a maximum of above 80% at 1 Pa oxygen pressure, based on which the band gaps of all ZnO films were calculated to be about 3.259–3.315 eV. Photoluminescence spectra indicated that there occurred no emission peak at a low oxygen pressure of 10−5 Pa. With the increment of the oxygen pressure, there occurred a UV emission peak of 378 nm, a weak violet emission peak of 405 nm and a wide green emission band centered at 520 nm. As the oxygen pressure increased further, the position of UV emission peak remained and its intensity changed non-monotonically and reached a maximum at 1 Pa. Meanwhile the intensity of green emission band increased monotonically with increasing the oxygen pressure. In addition, it was also found that the intensity of UV emission peak decreased as the measuring temperature shifted from 80 to 300 K. The analyses indicated that the UV emission peak originated from the combination of free excitons and the green emission band originated from the energy level jump from conduction band to OZn defect.  相似文献   

15.
Photogenerated carrier transfer is investigated in a set of three GaAs/AlAs short-period superlattices (SPSs) with different barrier thicknesses by steady-state and time-resolved photoluminescence (PL) spectroscopy at 15–20 K as a function of excitation power. The tunneling transport of carriers is evaluated by detecting excitonic PL signals from an embedded GaAs single quantum well (SQW) in the middle of the SPS layer. We find that, as the barrier thickness is decreased, the PL intensity ratio of SQW/SPS increases systematically due to enhanced tunneling efficiencies of both electrons and holes. However, the PL intensity ratio significantly increases with decreases in the excitation power by more than two orders of the magnitude. We attribute the enhanced PL intensity of SQW relative to the SPS to the faster transport of electrons that can recombine with residual holes to form excitons in SQW. The PL dynamics of SQW and SPS thus shows unique density-dependent PL intensity and time behaviors due to variations in relative amounts of excitons and free carriers to be transported into the SQW layer.  相似文献   

16.
Using a picosecond laser and a streak camera we have observed the time dependence of the luminescence intensity of free excitons, bound excitons, and excitonic molecules in CdS. The observed kinetics show that the P band is due to bimolecular emission from free excitons and that bound excitons are generated from free excitons through monomelecular process and excitonic molecule through bimolecular process.  相似文献   

17.
We present a combined experimental/theoretical study of the electronic properties of conjugated para-phenylene type molecules under high pressure up to 80 kbar. Pressure is used as a tool to vary the molecular geometry and intermolecular interaction. The influence of the latter two on singlet and triplet excitons as well as polarons is monitored via optical spectroscopy. We have performed band structure calculations for the planar poly(para-phenylene) and calculated the dielectric function. By varying the intermolecular distances and the length of the polymer repeat unit the observed pressure effects can be explained.  相似文献   

18.
We study theoretically the interaction between excitons and longitudinal optical (LO) phonons in a cylindrical disk-like semiconductor quantum dot under an applied magnetic field. Due to the intensity of the interaction in the strong coupling regime, a composite quasi-particle called exciton–polaron is formed. We focus on the effect of the disk size and an external magnetic field on the exciton–phonon interaction energy and the exciton–polaron modes. The numerical computation for a CdSe quantum disk have shown that the exciton–phonon interaction energy is very significant and is even dominant when the disk height is small, which leads to a large Rabi splitting between the exciton–polaron modes. We investigate also the effect of the temperature on the integrated photoluminescence (PL) intensity, and show that at relatively high temperature the LO phonons have a noticeable effect on it. This physical parameter also shows a great dependence on quantum disk size and on magnetic field.  相似文献   

19.
对离子注N的GaAs样品作了77K的静压光致荧光研究。观察到了N陷阱中心元胞势束缚激子Nx的发光光谱及畸变势束缚激子NT的发光峰。测量NX能级的压力系数为2.8meV/kbar,常压下N的共振态高于导带边179meV。讨论了N等电子陷阱的电声子耦合强度及有效束缚激子半径随压力的变化关系。 关键词:  相似文献   

20.
T. Iida  M. Tsubota 《Phase Transitions》2013,86(7-8):961-969
One of the best ways to obtain unambiguous experimental evidence for the superfluidity of excitons is to observe phenomena that are directly related to the phase of the condensed excitons. As an advantageous candidate for this purpose, we propose a quasi-two-dimensional exciton system in type-II quantum wells (QWs). We consider the condensed excitons in the type-II QW irradiated by a weak laser light and show that under the control of an external current J ex , the system takes the ordered state with (without) net superflow of excitons at T = 0 K when J ex is larger (smaller) than a certain critical value. Introducing probable mechanisms of phase transitions, we calculate the transition temperatures and construct the phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号