首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Within the framework of the effective-mass and envelope function theory, exciton states and optical properties in wurtzite (WZ) InGaN/GaN quantum wells (QWs) are investigated theoretically considering the built-in electric field effects. Numerical results show that the built-in electric field, well width and in composition have obvious influences on exciton states and optical properties in WZ InGaN/GaN QWs. The built-in electric field caused by polarizations leads to a remarkable reduction of the ground-state exciton binding energy, the interband transition energy and the integrated absorption probability in WZ InGaN/GaN QWs with any well width and In composition. In particular, the integrated absorption probability is zero in WZ InGaN/GaN QWs with any In composition and well width L > 4 nm. In addition, the competition effects between quantum confinement and the built-in electric field (between quantum size and the built-in electric field) on exciton states and optical properties have also been investigated.  相似文献   

2.
We report a theoretical study of the exchange interaction effects in the electron spin resonance (ESR) in n-type narrow-gap quantum well (QW) heterostructures. Using the Hartree-Fock approximation, based on the eight-band k?p Hamiltonian, the many-body correction to the ESR energy is found to be nonzero, providing theoretical evidence of Larmor theorem violation in symmetric narrow-gap QWs. We predict the exchange enhancement of the ESR g-factor and its divergence in low magnetic fields. The 'enhanced' ESR g-factor and quasiparticle g-factor, measured in magnetotransport, coincide at even-valued filling factors of the Landau levels in moderate and quantizing magnetic fields.  相似文献   

3.
The electronic structure and radiative lifetimes of Si(001) quantum films terminated by SiO4 tetrahedra, which simulate Si/SiO2 quantum wells (QWs), are calculated by the extended Hückel-type non-orthogonal tight-binding method. It is found that calculated band-gap widenings and radiative lifetimes account for band-edge shifts and photoluminescence (PL) peak shifts and lifetimes measured in amorphous-Si/SiO2 QWs, suggesting that quantum confinement effects on the extended band-edge states in the amorphous-Si layer are responsible for the observed results. However, it is shown that band-edge shifts and PL energies and lifetimes observed in crystalline-Si/SiO2 QWs cannot be reproduced properly by the interface model proposed in this study, implying that further studies are needed on the atomic structure of the crystalline-Si/SiO2 interface.  相似文献   

4.
刘扬  杨永春 《中国物理 B》2016,25(5):58101-058101
The effects of Mg doping in the quantum barriers(QBs) on the efficiency droop of GaN based light emitting diodes(LEDs) were investigated through a duel wavelength method. Barrier Mg doping would lead to the enhanced hole transportation and reduced polarization field in the quantum wells(QWs), both may reduce the efficiency droop. However,heavy Mg doping in the QBs would strongly deteriorate the crystal quality of the QWs grown after the doped QB. When increasing the injection current, the carriers would escape from the QWs between n-GaN and the doped QB and recombine non-radiatively in the QWs grown after the doped QB, leading to a serious efficiency droop.  相似文献   

5.
In this paper, the growth and characteristics of ZnCdSe/ZnSe quantum wells (QWs) prepared on ZnO-Si (111) templates are reported. An oriented ZnO thin film with a smooth surface was employed to be the buffer layer for the ZnCdSe/ZnSe QWs growth. Scanning electron microscopy (SEM) patterns showed that the ZnO buffer layer improved the smoothness of the ZnCdSe/ZnSe sample. Up to the 3rd longitudinal optical phonon of Zn0.56Cd0.44Se observed in Raman spectra suggests that the crystal quality of ZnCdSe/ZnSe QWs is reasonably good. The influence of quantum confinement effect on exciton characters of the QWs was also demonstrated.  相似文献   

6.
We present a theoretical study of the effect from doping of quantum wells (QWs) on enhancement of the mobility in one-side (1S) and two-side (2S) doped square infinite quantum well. Within the variational approach, we introduce the enhancement factor defined by the ratio of the overall mobility in the 2S doped square quantum wells to that in the 1S doped counterpart with the same sheet carrier density and interface profiles. The enhancement is fixed by the sample parameters such as well width and sheet carrier density. We propose two-side doping as an efficient way to upgrade the quality of QWs. Our theory is able to well reproduce the recent experimental data about low-temperature transport of electrons and holes in one-side and two-side doped square QWs.  相似文献   

7.
H Lu  T Yu  G Yuan  X Chen  Z Chen  G Chen  G Zhang 《Optics letters》2012,37(17):3693-3695
The optical polarization properties of staggered AlGaN-AlGaN/AlN quantum wells (QWs) are investigated using the theoretical model based on the k·p method. The numerical results show that the energy level order and coupling relation of the valence subband structure change in the staggered QWs and the trend is beneficial to TE polarized transition compared to that of conventional AlGaN/AlN QWs. As a result, the staggered QWs have much stronger TE-polarized emission than conventional AlGaN-based QWs, which can enhance the surface emission of deep ultraviolet (DUV) light-emitting diodes (LEDs). The polarization control by using staggered QWs can be applied in high efficiency DUV AlGaN-based LEDs.  相似文献   

8.
马小凤  王懿喆  周呈悦 《物理学报》2011,60(6):68102-068102
利用等离子体增强化学气相沉积技术制备了a-Si ∶H/SiO2多量子阱结构材料.对a-Si ∶H/SiO2多量子阱样品分别进行了3种不同的热处理,其中样品经1100 ℃高温退火可获得尺寸可控的nc-Si:H/SiO2量子点超晶格结构,其尺寸与非晶硅子层厚度相当.比较了a-Si ∶H/SiO2多量子阱材料与相同制备工艺条件下a-Si ∶H材料的吸收系数,在紫外/可见短波段前者的吸收系数明显增大,光学吸收边蓝移,说明该材料 关键词: 多量子阱 量子限制效应 光学吸收 能带结构  相似文献   

9.
A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels,owing to quantum confinement,and cannot form a photocurrent.We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent,indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs.We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions.Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.  相似文献   

10.
Quantum Hall effect (QHE), as a class of quantum phenomena that occur in macroscopic scale, is one of the most important topics in condensed matter physics. It has long been expected that QHE may occur without Landau levels so that neither external magnetic field nor high sample mobility is required for its study and application, Such a QHE free of Landau levels, can appear in topological insulators (TIs) with ferromagnetism as the quantized version of the anomalous Hall effect, i.e., quantum anomalous Hall (QAH) effect. Here we review our recent work on experimental realization of the QAH effect in magnetically doped TIs. With molecular beam epitaxy, we prepare thin films of Cr-doped (Bi,Sb)2Te3 TIs with well- controlled chemical potential and long-range ferromagnetic order that can survive the insulating phase. In such thin films, we eventually observed the quantization of the Hall resistance at h/e2 at zero field, accompanied by a considerable drop in the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value. The realization of the QAH effect provides a foundation for many other novel quantum phenomena predicted in TIs, and opens a route to practical applications of quantum Hall physics in low-power-consumption electronics.  相似文献   

11.
Because of the helicity of electrons in HgTe quantum wells(QWs) with inverted band structures,the electrons cannot be confined by electric barriers since electrons can tunnel the barriers perfectly without backscattering in the HgTe QWs.This behavior is similar to Dirac electrons in graphene.In this paper,we propose a scheme to confine carriers in HgTe QWs using an electric-magnetic barrier.We calculate the transmission of carriers in 2-dimensional HgTe QWs and find that the wave-vector filtering effect of local magnetic fields can confine the carriers.The confining effect will have a potential application in nanodevices based on HgTe QWs.  相似文献   

12.
Time-resolved photoluminescence (PL) measurements were performed for two different quantum nanostructures on V-groove patterned substrates; SiGe/Si quantum wells (QWs) on V-grooved Si substrates and AlGaAs spontaneous vertical quantum wells on V-grooved GaAs substrates. Anomalous behaviours of the PL, such as the decrease of the decay time of the SiGe (111) QWs and the (111)A AlGaAs layer, were fully explained by taking the exciton diffusion towards the bottom of the V-groove into account, showing that the exciton diffusion driven by the spatial nonuniformity of the alloy compositions and/or geometry of the substrates is a key to controlling the PL properties of the nanostructures.  相似文献   

13.
In an ultra-clean two-dimensional electron system (2DES), we have observed the magnetoplasmon resonance (MPR) through its microwave-photoconductivity, concurrently with the microwave-induced resistance oscillations (MIRO) and zero-resistance states (ZRS). It is found that the MIRO/ZRS is strongly suppressed by a moderate magnetic field () parallel to the 2DES, while the MPR is robust against a parallel magnetic field. These findings have not been addressed by current models proposed to explain the MIRO/ZRS.  相似文献   

14.
Two-dimensional quantum transport through the stripe of the hexagonal lattice of antidots built in the multimode channel in the GaAs/AlGaAs structure has been studied numerically. It has been found that the low perpendicular magnetic fields (~3 mT) suppress the bulk currents and cause the appearance of the edge Landau states and high positive magnetic resistance on both sides of the Dirac point. Tamm edge states are present in some energy intervals; as a result, the 4e 2/h-amplitude oscillations caused by the quantization of these states on the lattice length are added to the steps of the conductance quantization G n = (2|n| + 1)2e 2/h.  相似文献   

15.
邹永连  宋俊涛 《中国物理 B》2013,22(3):37304-037304
Because of helicity of electrons in HgTe quantum wells (QWs) with inverted band structure, the electrons cannot be confined by electric barriers since electrons can tunnel the barriers perfectly without backscattering in HgTe QWs. This behavior is similar to Dirac electrons in graphene. In this paper, we propose a scheme to confine carriers in HgTe QWs using an electric-magnetic barrier. We calculate the transmission of carriers in 2-dimensional HgTe QWs and find that the wave-vector filtering effect of local magnetic fields can confine the carriers. The confining effect will have potential application in nanodevices based on HgTe QWs.  相似文献   

16.
李春芳  周炯昴 《光子学报》1999,28(11):1036-1038
本文回答了文献《光子学报》1999,28(2):118~119对我们的论文(《光子学报》1998,27(8):734~738)所作的评论,强调指出,量子力学的整体性概念具有深刻的物理基础,Lan-dau和Lifshitz所讨论的一维无限深势阱中粒子的动量概率分布的出发点和结论是完全正确的。  相似文献   

17.
A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale. Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented theory.  相似文献   

18.
Measurements of the excitation power-dependence and temperature-dependence photoluminescence(PL) are performed to investigate the emission mechanisms of In Ga N/Ga N quantum wells(QWs) in laser diode structures. The PL spectral peak is blueshifted with increasing temperature over a certain temperature range. It is found that the blueshift range was larger when the PL excitation power is smaller. This particular behavior indicates that carriers are thermally activated from localized states and partially screen the piezoelectric field present in the QWs. The small blueshift range corresponds to a weak quantum-confined Stark effect(QCSE) and a relatively high internal quantum efficiency(IQE) of the QWs.  相似文献   

19.
Many body effects contribute significantly to the energy states of electron-hole pairs confined in quantum wells in the presence of excess electrons. We present results of optically detected resonance spectroscopy of the internal transitions of photo-excited electron-hole pairs in the presence of excess electrons for GaAs QWs and CdTe QWs. Compared to the case of isolated negatively charged excitons, excess electrons produce a large blue shift of the internal transitions in modulation-doped GaAs quantum wells (QWs) for filling factor <2, and similar effects are found in CdTe QWs. For filling factor >2 no internal transitions are observed. These measurements demonstrate the strong effects of electron-electron correlations on the internal transitions of charged excitons in these quasi-2D systems and the importance of magnetic translation invariance. In the presence of excess electrons, the observed internal transitions are those of a magnetoplasmon bound to a mobile valence band hole.  相似文献   

20.
SiGe/Si多量子阱中的光致子带间吸收研究   总被引:1,自引:1,他引:0  
吴兰 《光子学报》2001,30(6):704-708
本文论述了硅锗量子阱中的光致子带间吸收的机理,并在实验中探测SiGe/Si量子阱价带间的红外光致吸收.载流子由氩离子激光器作为光泵浦源产生,所导致的红外吸收由一个步进式傅里叶变换光谱仪来探测.在硅锗量子阱中的光致吸收有两个来源:类似单一掺杂的SiGe薄层的体吸收的自由载流子吸收,及量子阱价带的子带间吸收.实验探测了TE和TM偏振方向的吸收.TM偏振方向的吸收是由偏离布里渊带中心的载流子的跃迁所造成的.我们认为这种光致吸收技术在研究价带耦合效应及其对子带间吸收的影响是非常有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号