首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
红外光谱研究表明,苯乙烯-丙烯酸共聚物载体-钕络合物具有双配位的羧酸根结构,Nd-O键富有共价性。考察了载体钕络合物催化丁二烯聚合的一般规律,载体钕络合物的组成与聚合活性的关系。在溶剂THF或二氧六环的存在下制得的苯乙烯-丙烯酸共聚物最适宜于合成高活性的载体钕络合物。功能团-COOH含量大约12%,金属钕含量与功能团含量摩尔比在0.20左右的载体钕络合物催化活性最佳。  相似文献   

2.
本文研究了Fe(naph)_2(环烷酸亚铁)-Al(i-Bu)_3(三异丁基铝)-Phen(邻菲咯啉)-卤化物体系催化丁二烯聚合的一般规律。实验证实:卤化物可以提高体系的催化活性,调节聚合物的分子量,并能增加体系活性中心的稳定性;加料方式对体系的催化活性有显著的影响。催化剂的紫外-可见光谱研究表明:510nm处的吸收代表了此体系活性中心的特征吸收。  相似文献   

3.
 红外光谱研究表明,苯乙烯-丙烯酸共聚物载体-钕络合物具有双配位的羧酸根结构,Nd-O键富有共价性。考察了载体钕络合物催化丁二烯聚合的一般规律,载体钕络合物的组成与聚合活性的关系。在溶剂THF或二氧六环的存在下制得的苯乙烯-丙烯酸共聚物最适宜于合成高活性的载体钕络合物。功能团-COOH含量大约12%,金属钕含量与功能团含量摩尔比在0.20左右的载体钕络合物催化活性最佳。  相似文献   

4.
Summary: Catalyst systems for polymerization often exhibit variable and poorly controllable activity because of strong influences of trace components and catalyst preparation conditions. In cationic polymerizations in particular, determining catalytic activity and hence the amount of catalyst to be used is challenging. The assessment of a given initiator system typically requires testing it in polymerization reactions. Determining catalytic activity before using the initiator in a polymerization reaction is a desirable approach. This contribution describes the development of such an activity monitoring tool. In the first part, results from a fundamental characterization of the system diethylaluminum chloride/ethylaluminum dichloride/water by different NMR measurements and elemental analysis are reported. Structures characteristic of catalytically active systems are presented. The second part describes the application of transmission IR to the characterization of this system and the correlation of IR results to catalytic activity in dimerization and polymerization reactions. Implementation of the IR analysis as an on-line measurement is demonstrated.  相似文献   

5.
A series of spray dried zeolitic imidazolate frameworks (ZIFs = ZIF‐8, ZIF‐67, and Zn/Co‐ZIF) are used as a catalyst for the bulk ring‐opening polymerization of δ‐valerolactone without any co‐catalyst to generate polyvalerolactone. Interestingly, using the same catalyst under the same reaction conditions could manipulate the structure of the product polymer, and thus its physical properties. Thus, using a dried substrate leads to the formation of the cyclic polymer while a linear polymer was formed on using the commercially available substrate. An activated monomer mechanism has been suggested where the propagating zinc alkoxide undergoes an intramolecular transesterification to release cyclic or linear polyvalerolactone. The ROP of δ‐VL without drying shows that the polymeric zwitterions have little tendency to cyclize in the presence of moisture. At 140 °C, ZIF‐8 shows a superior catalytic activity resulting in the production of cyclic polyvalerolactone having a high molecular weight as compared to ZIF‐67 or Zn/Co‐ZIF due to the presence of highly active sites. The catalyst could be recycled and reused without any significant loss of catalytic activity.  相似文献   

6.
采用2种方法制备了原位负载稀土三元催化剂,即先将均相的Y(CCl3OO)3-Glycerin体系负载在载体上,后逐滴加入ZnEt2(标记为Y(CCl3OO)3-Glycerin/γ-Al2O3/ZnEt2);或先将ZnEt2与载体反应,再与均相的Y(CCl3OO)3-Glycerin体系反应(标记为ZnEt2/γ-Al2O3/Y(CCl3OO)3-Glycerin).研究发现原位负载催化剂催化环氧丙烷和二氧化碳共聚合反应的活性比未负载前低24%~36%,通过分析催化剂制备过程中所生成的乙烷量的变化,证明原位负载时催化剂组分如Y(CCl3OO)3、Glycerin或ZnEt2发生了向载体孔隙内的扩散渗透,使得催化剂各组分配比与未负载催化剂相比发生了偏差,从而降低了催化活性;另一方面,表面羟基与ZnEt2反应形成了低效率的活性种,也是原位负载催化剂活性不高的原因之一.提出了影响原位负载稀土三元催化剂活性的2个主要因素,即活性种的反应活性和活性种的数量.通过调节催化剂组分配比、负载化阶段的振荡研磨时间、原位负载时的活性种状态、载体的表面状态等,可使负载催化剂的活性比未负载的稀土三元催化剂提高3.5%.  相似文献   

7.
Kinetics for the polymerization of ethylene and the copolymerization of ethylene and propylene were studied by using highly effective heterogeneous metal organic catalysts produced by coating different organic and inorganic supports with the components of Ziegler systems. The activity of a supported Ziegler catalyst is characterized by the physical parameters of the support structure and its chemical nature. The active role of magnesium-containing supports was established for the formation and functioning of the propagating species on their surfaces. This role is expressed not only by an increase in the portion of transition metal included in the propagating species, compared with typical Ziegler catalysts, but also by an increase in the reactivity of the propagating species, change in the nature of the elementary processes for polymerization and copolymerization, including control of copolymerization constants, and modification of the molecular structure of the polymers and copolymers. It was shown that by choice of support it is possible to control the activity of the same catalytic system and characteristics of the structure and properties of the polymers it produces under identical polymerization conditions.  相似文献   

8.
In order to elucidate the reaction mechanism of both the radiation-induced and benzoyl peroxide-catalyzed polymerizations of cyclic ethers in the presence of maleic anhydride, the development of color during reaction and copolymerization of oxetane derivatives were investigated. Upon addition of a small amount of the γ-ray or ultraviolet-irradiated equimolar solution of a cyclic ether and maleic anhydride to isobutyl vinyl ether, a rapid polymerization took place, and the resulting polymer was confirmed to be a homopolymer of isobutyl vinyl ether. A heated solution of dioxane, maleic anhydride, and a small amount of benzoyl peroxide can initiate the polymerization of isobutyl vinyl ether in the same manner. The electrical conductivity of a 1:1 mixture of maleic anhydride and dioxane is increased by about a factor of ten after ultraviolet irradiation. These results indicate that some cationic species are actually formed in the system by irradiation or the decomposition of added benzoyl peroxide. The mechanism of formation of the cationic species responsible for the initiation may be explained as follows. A free radical of an ether is formed by abstraction of a hydrogen atom attached to the carbon adjacent to oxygen atom, followed by a one-electron transfer from the resulting radical to maleic anhydride, an electron acceptor, to yield the cationic species of the ether and the anion-radical of maleic anhydride, respectively. The resulting cationic species as well as the counteranion-radical are resonance-stabilized. Therefore, the present polymerization may be designated a radical-induced cationic polymerization.  相似文献   

9.
用高效SiO2载体催化剂进行乙烯气相聚合   总被引:2,自引:0,他引:2  
使用球形SiO2负载MgCl2-TiCl4高活性催化剂进行乙烯气相聚合,考察了催化剂制备条件和添加剂对催化剂的组成、催化活性以及聚合表观动力学的影响.结果表明,SiO2热处理温度和所用的醇对Mg和Ti的负载量及乙烯聚合活性有明显的影响.催化剂制备中添加Lewis酸SiCl4或AlEt2Cl能大幅度提高催化剂的活性,其中以SiCl4的效果最为明显.随着SiCl4用量的增加,乙烯气相聚合的活性显著提高,聚合速度随时间变化由渐升平稳型转变为衰减型  相似文献   

10.
The catalytic activity and stereospecificity of olefin polymerization by using heterogeneous TiCl_4/MgCl_2 Ziegler-Natta(Z-N) catalysts are determined by the structure and nature of active centers, which are mysterious and fairly controversial. In this work, the propylene polymerization kinetics under different polymerization temperatures by using Z-N catalysts were investigated through monitoring the concentration of active centers [C*] with different tacticity. SEM was applied to characterize the catalyst morphologies and growing polypropylene(PP) particles. The lamellar thickness and crystallizability of PP obtained under different polymerization conditions were analyzed by DSC and SAXS. The PP fractions and active centers with different tacticity were obtained with solvent extraction fractionation method. The catalytic activity, active centers with different tacticity and propagation rate constant k_p, fragmentation of the catalyst, crystalline structure of PP are correlated with temperature and time for propylene polymerizations. The polymerization temperature and time show complex influences on the propylene polymerization. The higher polymerization temperature(60 ℃) resulted higher activity, k_p and lower [C*], and the isotactic active centers C_i* as the majority ones producing the highest isotactic polypropylene(iPP) components showed much higher k_p when compared with the active centers with lower stereoselectivity. Appropriate polymerization time provided full fragmentation of the catalyst and minimum diffusion limitation. This work aims to elucidate the formation and evolution of active centers with different tacticity under different polymerization temperature and time and its relations with the fragmentation of the PP/catalyst particles, and provide the solutions to the improvement of catalyst activity and isotacticity of PP.  相似文献   

11.
近年来文献中出现了一些以歧化催化剂用于炔烃聚合的尝试[1-4],例如以WCl6-ph4Sn、MoCl5-ph4Sn体系进行炔烃聚合反应,均有活性。我们在烯烃均相催化歧化反应的研究中,试探了将此类催化剂用于乙炔聚合,结果是:(1)试验过的7种催化体系均能使乙炔聚合,生成黑色不溶的高分子,红外光谱测定表明,得到的聚乙炔是顺式和反式结构的混合物,此外,部分乙炔尚三聚环化成苯;(2)不同催化剂作用下乙炔聚合和烯烃歧化的活性和选择性没有平行关系;(3)几种催化体系对乙炔高聚和环化三聚的选择性不同(见表1)。  相似文献   

12.
Depositing catalytically active particles onto flat, thin and oxidic support forms an attractive way to make supported catalyst suitable for surface science characterization. Here we show how this approach has been applied to the Phillips (CrOx/SiO2) ethylene polymerization catalyst. The model catalyst shows a respectable polymerization activity after thermal activation in dry air (calcination). Combining the molecular information from X‐ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) we can draw a molecular level of the activated catalyst that features exclusively monochromate species, which are anchored to the silica support via ester bonds with the surface silanol groups. These surface chromates form the active polymerization site upon contact with ethylene. Upon increasing calcination temperature we observe a decrease in chromium coverage as some of the surface chromate desorbs from the silica surface. Nevertheless, we also find an increasing polymerization activity of the model catalyst. We attribute this increase in catalytic activity to the isolation of the supported chromium, which prevents dimerization of the coordinatively unsaturated active site. Diluting the amount of chromium to 200 Cr‐atoms/nm2 of silica surface enables the visualisation of polyethylene produced by a single active site.  相似文献   

13.
Cobalt-modified nickel-zinc catalyst CuNi(Zn)Co is prepared on a copper substrate by using electrodeposition. Its catalytic efficiency for methanol oxidation is studied with cyclic voltammetry, chronoamperometry, and chronopotentiometry techniques. The surface morphology and chemical composition of catalyst are characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The oxidation kinetic parameters activation energy (Ea), active species on the surface (Γ), and rate constant (k) are determined from cyclic voltammograms which are performed at different methanol concentrations and temperatures. The results show that Ni(Zn)Co catalyst has higher catalytic activity than Ni, Co, and NiZn coatings as a composite catalyst for a promising choice of methanol electrooxidation in the alkaline medium.  相似文献   

14.
Catalytic polymerization of acetylene in the presence of n5-C5H5-M-(CO)3 R (M=Mo,W;R=CH3-,C2H5-) has been studied.The results show that these complexes possess catalytic activities for the polymerization and copolymerization of monosubstituted acetylene.The catalytic mechanism has been preliminarily discussed.It is suggested that the active species be metal-car-bene.In our previous publications we reported the synthesis of some new Fischer's molybdenum and tungsten-carbene complexes and catalytic activity for alkyne polymerization.The results show that the activity of Fischer's molybdenum-carbene is higher than that of tungsten.The catalytic polymerization of alkyne by M-σ-c bond-containing complexes of molybdenum and tungsten has not been reported yet in literature.Therefore,four M-σ-C bondontaining complexes of molybdenum and tungsten were synthesized by using the method reported in the literature,and catalyst polymerization of alkyne by these complexes was examined.  相似文献   

15.
研究了Co(naph) 2 Al(i Bu) 2 Cl催化体系的相态 .通过Tyndall效应、电镜观察和超过滤实验 ,证明了Co(naph) 2 Al(i Bu) 2 Cl催化体系在溶有丁二烯的苯溶剂中以纳米级小颗粒分散 ,在较佳配比时 ,粒径在 1~10 0nm之间 ,为胶体催化剂 ,属于高度分散的多相催化体系 .催化剂的活性位位于胶粒表面 ,催化剂颗粒是无定形的 .以较佳配比得到的催化剂颗粒较小、分布均匀 ,催化丁二烯聚合反应活性高 .归纳出胶体催化剂的制备特点为外观类似于均相催化体系 ,但是制备方法 (各组分配比、加入顺序、陈化等 )对催化活性有明显的影响 .并给出将胶体催化动力学作均相动力学近似的条件 ,在聚合反应初期 ,且单体浓度比烷基铝以及其他填加物浓度大 2~ 3数量级  相似文献   

16.
The stereospecific polymerizations of methacrylonitrile with diethylmagnesium were carefully studied by using various ethers as complexing agents. The complexed ethers exhibit a beneficial effect on the stereoregularity of the resulting polymer, namely, the crystallinity increased by using ethers as a complexing agent. The polymerization rate and the molecular weight of the polymer also increased by using ether-complexed catalysts. The polymerization behavior was studied with the dioxane–diethylmagnesium complex as a typical complexed catalyst. The behavior was mostly similar to that of the diethymagnesium alone, that is, the rate of the polymerization increased in proportion to monomer concentration, and the solubility index increased with increasing monomer concentration. Interestingly, the viscosity of the acetone-insoluble fraction increased with increasing monomer concentration, while that of the acetone-soluble fraction was independent of monomer concentration. This is explained by considering that the catalyst has at least two kinds of catalytic species, one being the species that produces the crystalline polymer by a coordinated anionic polymerization, another being the one from which an amorphous polymer is obtained by a conventional anionic mechanism. The fact that the viscosity of the polymer decreased with increasing the initiator concentration is explained in terms of chain trasfer to the initiator. In case of diethylmagnesium alone, the viscosity of the polymer is independent of the initiator concentration.  相似文献   

17.
甲烷氧化偶联MgO/BaCO3催化剂的表面结构与催化活性   总被引:2,自引:0,他引:2  
达建文  杨廷录 《分子催化》1995,9(5):339-346
用CO2-TPD,CO,CH4脉冲以及EPR,XPS等方法对MgO/BaCO3的表面结构及催化活性进行研究,结果表明,催化剂的碱性,氧扩散速率等对催化剂的活性均有影响。BaCO3和MgO的共同作用可以增强催化剂的碱性强度?增加强碱中心的量,调变晶格氧的移动性,提高C2烃的收率和选择性。EPR和XPS测试结果表明,表面吸附态的氧物种O^-2作为甲烷氧化偶联活性氧物种的前驱态在反应反应条件下可转化为活  相似文献   

18.
The nonuniformity of active sites of a titanium-containing catalytic system in terms of their stereoregulating ability and kinetic activity during butadiene polymerization was studied. It was shown that active sites of three types differing in stereoregulating power and kinetic activity can be formed under polymerization conditions corresponding to the maximum catalyst activity. By solving inverse kinetic problems, the rate parameters for active sites of different types were obtained.  相似文献   

19.
The catalytic system Co/methylaluminoxane/tert-butyl chloride has been studied and optimized for the polymerization of 1,3-butadiene to high cis-1,4-polybutadiene. The ratio of the individual catalyst components was investigated to achieve maximum conversion, stereoregularity, and molecular weight. It was found that the specific order of addition of catalyst components to the feedstock and aging time therein has critical influence in the polymerization reaction. This can be attributed to the rate of chlorinating the aluminoxane and the stability of the active catalyst sites obtained. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3277–3284, 1999  相似文献   

20.
A supported magnesium-vanadium-aluminium catalyst was prepared by depositing –with the use of a milling technique–VOCl3 on the MgCl2(THF)2 support and subsequent activation with diethylaluminium chloride. Catalytic activity of the obtained system for ethylene polymerization was evaluated as a function of Mg/V and Al/V ratios as well as catalyst ageing time and polymerization temperature. High concentrations of THF in the catalytic system and considerable excess of an organoaluminium co-catalyst were found to have no deactivating action on vanadium active sites. The catalyst obtained is stable and its activity for ethylene polymerization is high. It yields polyethylene with higher molecular weight and higher melting point than offered by the materials produced with the use of a corresponding unsupported vanadium catalyst or a titanium-based system on the same magnesium support. Kinetic investigations confirmed stability of this catalyst irrespective of its concentration in the polymerization medium or of monomer concentration. Moreover, analysis of the kinetic findings revealed that over 80% of vanadium employed forms active polymerization sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号