首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In the present work, silver nanoparticles (AgNPs) were in situ generated in cellulose matrix using leaf extract of Azadirachta indica as a reducing agent. The cellulose/AgNP composite films prepared were characterized by FTIR, X-ray diffraction (XRD), scanning electron microscope, and antibacterial tests. The infrared spectra indicated the association of organic materials with silver nanoparticles to serve as capping agents. Scanning electron micrographs showed that synthesized silver nanoparticles were nearly uniform and spherical in shape with diameter in the range of 61–110?nm. XRD confirmed the formation of AgNPs and Ag–O nanoparticles. The nanocomposite films showed good antibacterial activity against Escherichia coli bacteria.  相似文献   

2.
A new composite cotton fabric with hydrogel containing silver nanoparticles (AgNPs) has been synthesized by two steps, and simultaneous in situ synthesis of AgNPs under visible light irradiation has been performed. The influence of silver nitrate concentration upon the hydrogel and AgNP properties was studied by colorimetric analysis, scanning electron microscopy, and transmission electron microscopy. The antibacterial activities of the composite materials have been investigated against Acinetobacter johnsonii and Escherichia coli in agar medium and meat-peptone broth. The results showed high inhibition activity toward both test cultures which were better expressed against A. johnsonii.  相似文献   

3.
The tamarind fruit shell powder (TFSP) from agricultural waste was modified by in situ generation of silver nanoparticles (AgNPs) using the one-step hydrothermal method and characterized by SEM, EDX, FTIR spectral, XRD, and antibacterial tests. SEM analysis indicated the in situ generation of AgNPs with an average size of 90?nm. FTIR analysis proved no structural changes between unmodified and modified TFSP. XRD analysis indicated in situ generation of AgNPs in the modified TFSP. Further, the TFSP with in situ generated AgNPs inhibited the growth of bacteria and hence can be used as antibacterial low-cost filler in making biocomposites.  相似文献   

4.
Ligno-cellulosic fibers have a great market and propose higher value addition and options to develop various products but they do not have inherent antimicrobial properties. In this study, a simple hydrothermal method was applied to build up antimicrobial properties to natural fibers by in situ-generating silver nanoparticles (AgNPs) in them. Herein, the ligno-cellulosic Thespesia lampas natural fibers were selected to develop antimicrobial activity using silver nitrate (AgNO3) solution by hydrothermal method. The modified fibers were characterized by SEM, FTIR, XRD, TGA, and antibacterial activity tests. The modified fibers had spherical AgNPs with an average size of 95?nm. The thermal stability of the modified fibers was higher than that of the unmodified fibers. The modified fibers exhibited good antibacterial activity against both the Gram negative and Gram positive bacteria. These modified fibers can be considered as fillers in polymer matrices to make antibacterial composites.  相似文献   

5.
Nanocomposite cotton fabrics with in situ-generated silver nanoparticles (AgNPs) were prepared by using Pterocarpus santalinus (Red sanders) extract in water as a reducing agent. The formation of AgNPs was analyzed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy. The SEM analysis of nanocomposites showed the presence of spherical AgNPs with a size range of 71–90?nm. FTIR spectra showed the involvement of hydroxyl and methylene groups of cellulose matrix in reducing the silver salt into AgNPs in the presence of red sanders powder extract as reducing agent for the in situ generation of AgNPs. These nanocomposite fabrics exhibited good antibacterial activity against Gram positive and Gram negative bacteria.  相似文献   

6.
Using tamarind leaf extract as a reducing agent and various concentrated aq?AgNO3 solutions as source, the silver nanoparticles (AgNPs) were in situ generated in polyester fabrics. The nanocomposite polyester fabrics were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and antibacterial tests. The size of the generated AgNPs varied between 50 and 120?nm. The X-ray analysis indicated the generation of both AgNPs and AgO nanoparticles in the nanocomposite fabrics. The nanocomposite polyester fabrics exhibited excellent antibacterial activity against both the Gram negative and Gram positive bacteria and hence can be considered for making antibacterial textiles.  相似文献   

7.
Cellulose was dissolved in aq.(LiOH + urea) solution pre-cooled to –12.5°C and the wet films were prepared using ethyl alcohol coagulation bath. The gel cellulose films were dipped in 10 wt.% Cassia alata leaf extract solution and allowed the extract to diffuse into them. The leaf extract infused wet cellulose films were dipped in different concentrated aq. copper sulphate solutions and allowed for in situ generation of copper nanoparticles (CuNPs) inside the matrix. The morphological, structural, antibacterial, thermal, and tensile properties of dried cellulose/CuNP composite films were carried out. The presence of CuNPs was established by EDX spectra and X-ray diffraction. The composite films displayed higher thermal stability than the matrix due to the presence of CuNPs. Cellulose/CuNP composite films possessed better tensile strength than the matrix. The composite films showed good antibacterial activity against E.coli bacteria. We conclude that good antibacterial activity and better tensile properties of the cellulose/CuNP composite films make them suitable for antibacterial wrapping and medical purposes.  相似文献   

8.
Due to environmentally friendly and cost- effective issues, biological methods for silver nanoparticles (AgNPs) synthesis are advantageous over chemical and physical ones. In this study, AgNPs synthesized using Lavandula stoechas extract as a reductant and its antioxidant capacity, antibacterial property and cytotoxicity effect were investigated. The phyto-synthesized AgNPs were characterized using various analyses such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) as well as Fourier transform infrared (FT-IR). The prepared nanoparticles were spherical on shape with the size about 20–50 nm. Antibacterial studies through agar disk diffusion method confirmed the antibacterial potential of phyto-synthesized AgNPs toward two clinical Staphylococus aureus and Pseudomonas aeruginosa bacteria, although MTT assay demonstrated that S. aureus (MIC = 125 μg/ml) was more susceptible to AgNPs than P. aeruginosa (MIC = 250 μg/ml). Moreover, the cytotoxicity assay of phyto-synthezied AgNPs showed a low cytotoxic effect on RAW264 cell line at 62.5 μg/ml as an effective concentration. Also the considerable antioxidant capacity of the AgNPs confirmed through DPPH assay. Great antibacterial and antioxidant properties along with biocompatibility make the suggested phyto-synthesized AgNPs a great candidate for different biomedical applications including wound healing.  相似文献   

9.
This study aims to evaluate the capability of Ageratum conyzoides and Mikania micrantha extracts to synthesize silver nanoparticles (AgNPs) and their antibacterial capability against gram‐positive and gram‐negative bacteria. Several properties of the synthesized AgNPs, including plasmonic, biomolecule bonding, shape, size, and antibacterial, were investigated. Ultraviolet–visible (UV–vis) spectroscopy was employed for characterizing their plasmonic properties. Functional groups on the produced AgNPs were investigated by Fourier‐transform infrared (FT‐IR) spectroscopy. The size and shape of the AgNPs were identified using the field‐emission scanning electron microscopy (FESEM). Inhibition zone measurement was carried out for evaluating the antibacterial capability. This study showed that the extracts of A. conyzoides and M. micrantha were able reducing agents as evidenced by the formation of the spherical AgNPs. UV–vis spectroscopy, FT‐IR spectroscopy, and FESEM confirmed the physicochemical characteristics of AgNPs. AgNPs that were synthesized using M. micrantha were slightly smaller than those produced using A. conyzoides. In general, the present work establishes that the synthesized AgNPs have antibacterial capability depending on their size and synthesis procedure.  相似文献   

10.
Homogeneously dispersed silver nanoparticles (AgNPs) were successfully decorated onto the surface of TiO2 nanotube arrays (TNTA) by means of an in situ photoreduction method. TNTA films as supports exhibit excellent properties to prevent agglomeration of AgNPs, and they also avoid using polymer ligands, which is deleterious to enhancing the properties of the fabricated NPs. The silver particle size and its content could be controlled just by changing the immersion time. Detailed SEM and TEM analyses combined with energy‐dispersive X‐ray spectroscopy analyses with different immersion times (5, 10, 30, 60 min) have revealed the variation tendency. The prepared Ag/TNTA composite films were also characterized by XRD, X‐ray photoelectron spectroscopy, and high‐resolution TEM. The UV/Vis diffuse reflectance spectra displayed a redshift of the absorption peak with the growth of AgNPs. The photocurrent response and the photoelectrocatalytic degradation of methyl orange (MO) were used to evaluate the photoelectrochemical properties of the fabricated samples. The results showed that the photocurrent response and photoelectrocatalytic activity largely depended on the loaded Ag particle size and content. TNTA films with a diameter of 17.92 nm and silver content of 1.15 at % showed the highest photocurrent response and degradation rate of MO. The enhanced properties could be attributed to the synergistic effect between AgNPs and TiO2. To make good use of this effect, particle size and silver content should be well controlled to develop the electron charge and discharge process during the photoelectrical process. Neither smaller nor larger AgNPs caused decreased photoelectrical properties.  相似文献   

11.
Cellulose/Tamarind nut powder (TNP)/Silver nanoparticles (AgNPs) nanocomposites were prepared by in situ generation of AgNPs using regeneration method, followed by solution casting method. In this, TNP was used as a reducing agent. These nanocomposites were characterized using FT-IR spectroscopy, XRD and SEM and studied their mechanical properties and antibacterial activity for medical and packing applications. The FT-IR spectral studies revealed the involvement of functional groups – Polyphenols, Flavonoids and –OH in the process of reducing the metal salts into metal nanoparticles. These nanocomposites showed good antibacterial activity against five bacteria. Improved mechanical properties with good antibacterial activities make these composites suitable for medical, food and packaging applications.  相似文献   

12.
Functional polymer/AgNPs nanocomposites have been prepared. Silver nanoparticles (NPs) were synthesized to which polyacrylamide, PAAm, was covalently bound. PAAm was synthesized via a RAFT reaction and carried thiol and carboxylic acid end groups. Thiol was used to bind the polymer to the metal surface and carboxyl for further reactions. The AgNPs were used in a post‐crosslinking reaction with a separately synthesized poly(butyl acrylate‐co‐methyl methacrylate)/polyglycidyl methacrylate core/shell latex bearing epoxy functional groups. Dynamic mechanical analysis showed that the functional AgNPs effectively crosslinked the latex polymer, and that the final product had excellent mechanical strength. Antibacterial tests revealed that the nanocomposite films had strong antibacterial activity against all types of the bacteria and the immobilization of silver NPs by crosslinking retarded the release of silver in comparison to the uncrosslinked ones. With the presented method, it is possible to obtain ductile antibacterial nanocomposites to be used as waterborne functional coatings. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1435–1447  相似文献   

13.
An eco-friendly chemical reduction method was successfully used for the preparation of chitosan (CTS) composite films loaded with silver nanoparticles (AgNPs) by self assembly method using poly(ethylene glycol) as both reducing and stabilizing agent. UV-Vis spectra of the prepared chitosan loaded silver nanoparticles (CTSLAg) films reveal that full reduction of silver ions to silver nanoparticles takes place at 90 °C. The effect of reaction conditions on the silver nanoparticles formation was investigated using UV-Vis spectrophotometer. The morphology of the films was tested by scanning electron microscopy (SEM). The DSC curves showed that the CTSLAg film had a favorable compatibility and heat stability. AgNPs were confirmed by XRD and UV-Vis spectroscopy. The TEM findings revealed that the silver nanoparticles synthesized were spherical in shape with uniform dispersal, and by increasing CTS:PEG ratio larger silver nanoparticles could be obtained. The results of antibacterial study reveal that the prepared nanocomposite films exhibited potential inhibition.  相似文献   

14.
In this study, a facile, efficient, and surfactant‐free method to synthesize silica nanosphere‐supported ultrafine silver nanoparticles (AgNPs) (~2.5 nm) was developed, and their antibacterial effects were investigated. In the synthesis process, the hydrolysis of 3‐mercaptopropyltrimethoxysilane was adopted to provide thiol groups and in situ reduce Ag+ to Ag0 for ultrafine AgNPs formation on the surface of the silica nanosphere. Electron microscopy characterization of the complex formed revealed that the ultrafine AgNPs were not agglomerated and grow without any surfactants because there were no excess electrons transported from the shell to reduce the silver ions to silver atoms. The antibacterial effects of the supported ultrafine AgNPs with the surfactant‐free surface were evaluated against the Escherichia coli even at very low dosage. After incubation with 20 μg/mL silica‐supported AgNPs up to 120 min, 99.7% of the E. coli were inactivated, according to the bacterial viability measured by flow cytometry.  相似文献   

15.
ABSTRACT

The present work reports a method for green synthesis of silver nanoparticles (AgNPs) by reducing Ag ions from silver nitrate solution using alcoholic, aqueous and alcoholic-aqueous Stevia rebaudiana extracts. Depending on a particular extract different sizes of AgNPs could be observed – 40?nm in aqueous and aqueous-alcoholic extracts and significantly bigger 170?nm in case of alcoholic extract. Synthesis of AgNPs was analyzed within spectra range of 300–700?nm. The performed research provided information that aqueous and aqueous-alcoholic extracts are excellent sources for synthesis of AgNPs; however AgNPs were unstable in the case of alcoholic extract. The aqueous-alcoholic extract showed the best properties during studies. Antioxidant potential, antimicrobial properties and cytotoxicity were determined. The 2,2-diphenyl-1-(2,4,6-triphenyl-hydrazyl) method showed that antioxidant activity of an extract containing AgNPs was higher compared to Stevia extract alone. Bacterial inhibition studies had shown substantial antibacterial properties of AgNPs, which was much higher than Stevia extract alone and silver nitrate.  相似文献   

16.
In the present work, silver nanoparticles were in situ-generated in cellulose matrix using Ocimum sanctum leaf extract as a reducing agent. Regenerated wet cellulose films were first immersed in O. sanctum leaf extract and then it was allowed to diffuse into the films. The leaf extract–diffused wet films were dipped in different concentrated aq.AgNO3 solutions. The leaf extract inside the wet films reduced AgNO3 into nanosilver. The dry composite films were black in color. Some of the nanoparticles were also formed outside the film in the solution. The nanoparticles were viewed by transmission electron microscopy and scanning electronic microscopy techniques. The composite films showed good antibacterial activity. The cellulose, matrix, and the composite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis techniques. The tensile properties of the composite films were higher than those of the matrix. These biodegradable films can be used for packaging and medical purposes.  相似文献   

17.
Novel semi‐interpenetrating polymer networks (SIPNs) based on segmented polyurethane‐urea and poly(N‐isopropylacrylamide‐co‐acrylic acid‐co‐butylmethacrylate) (poly(NIPAM‐co‐AA‐BMA)) were synthesized for the fabrication of silver nanoparticles (AgNPs) in the SIPN system that could be useful for wound dressing applications. The obtained SIPN films, after neutralization, showed high swelling in aqueous environments and good mechanical properties in both dry and hydrated states. Analysis of the dried SIPN films by differential scanning calorimetry and dynamic viscoelastic measurements revealed the presence of crosslinked copolymers as well as homopolymers in the SIPN system. The neutralized swollen SIPN film coordinated with the silver ions (Ag+) that were incorporated into it. AgNPs were subsequently formed by the reduction of Ag+. The formation of AgNPs was characterized by UV‐visible spectroscopy, atomic force microscopy, wide‐angle X‐ray diffraction, and thermogravimetric analysis (TGA). Bactericidal activity tests revealed a distinct zone of microbial inhibition within and around the silver‐doped SIPN films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4950–4962, 2009  相似文献   

18.
利用聚乙二醇(PEG 1000)引发乙交酯和 D,L-丙交酯开环共聚合, 制备了聚丙交酯乙交酯(PLGA)三嵌段共聚物(PLGA-PEG-PLGA)温敏水凝胶材料; 利用核磁共振氢谱( 1H NMR)确定了产物的结构及组成. 通过还原硝酸银的方法制备银纳米粒子(AgNPs), 并将其与PLGA-PEG-PLGA三嵌段共聚物水凝胶混合, 制得新型AgNPs/PLGA-PEG-PLGA复合水凝胶; 对该复合水凝胶的相关性能进行了表征. AgNPs/PLGA-PEG-PLGA复合水凝胶仍然具有温敏性能, 随着温度升高可发生溶胶-凝胶的相转变; 还可以持续释放银纳米粒子, 从而发挥抗菌性能. 体外细胞实验结果表明, AgNPs/PLGA-PEG-PLGA复合水凝胶具有良好的生物相容性, 未见明显细胞毒性, 是具有应用前景的新型复合水凝胶.  相似文献   

19.
Silver nanoparticles (AgNPs) attract a great deal of attention for potent antibacterial capacity, but their use is challenged by limited stability. Inspired by the adhesive and redox properties of the mussel foot proteins containing L -3,4-dihydroxyphenylalanine (DOPA), a facile strategy for in situ synthesis of AgNPs using DOPA-containing fibroin is developed. Tyrosine residues in fibroin are transformed into DOPA via biomimetic synthesis method with content of 0.55 mol%. In situ synthesis generates stable and small AgNPs through DOPA bound in fibroin as a reducing and stabilizing agent. Narrow size distribution with average diameter of 20 nm and excellent monodispersity are obtained. Cross-linking with lysine increases the content of β-sheet to form hydrogel and achieves gradual release of silver. The material exhibits excellent antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. It can be potentially applied in biological and medical fields to treat bacterial infections.  相似文献   

20.
The development of antibiotic resistance in pathogenic bacterial strains has drawn attention to the quest for new natural antibacterial drugs. Therefore, in the present study, extracts of Rumex hastatus leaves were obtained in methanol and water, and R. hastatus-based silver nanoparticles (AgNPs) were synthesized. Structural and functional properties of synthesized silver nanoparticles were determined by UV–vis spectroscopy, XRD, FTIR and SEM. The synthesized AgNPs and crude extracts were tested to check their antibacterial potential against human pathogenic bacterial strains of Staphylococcus aureus, Staphylococcus haemoliticus, Bacillus cereus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa in well diffusion and broth dilution methods. The present investigation has revealed for the first time that the broth dilution method was found more reproducible than that of the well diffusion method even at lower concentrations of AgNPs and crude extracts. UV– Vis spectroscopic analysis of AgNPs revealed a peak at 367 nm. XRD pattern showed a face-centered cubical to the spherical structure of AgNP crystals. FTIR analysis revealed that flavonoids and terpenoids are responsible for the reduction of AgNO3 to Ag+. SEM analysis determined the spherical structure and 51 nm average diameter of nanoparticles. The antibacterial activity of R. hastatus-based (AgNPs) was found to be significantly higher than aqueous plant extract and silver nitrate alone. Bacterial growth was inhibited by R. hastatus-based AgNPs in a dose-dependent manner. To our knowledge, silver nanoparticles (AgNPs) of R. hastatus were synthesized and characterized for the first time in this study and, based on the findings of current research work R. hastatus extract-based silver nanoparticles are suggested to be used as an antibacterial drug instead of synthetic drugs for the treatment of various human diseases/infections caused by the tested bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号