首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mesterolone (1α-methyl-5α-androstan-17β-ol-3-one) is a synthetic anabolic androgenic steroid (AAS) with reported abuses in human sports. As for other AAS, mesterolone is also a potential doping agent in equine sports. Metabolic studies on mesterolone have been reported for humans, whereas little is known about its metabolic fate in horses. This paper describes the studies of both the in vitro and in vivo metabolism of mesterolone in racehorses with an objective to identify the most appropriate target metabolites for detecting mesterolone administration.In vitro biotransformation studies of mesterolone were performed by incubating the steroid with horse liver microsomes. Metabolites in the incubation mixture were isolated by liquid-liquid extraction and analysed by gas chromatography-mass spectrometry (GC-MS) after acylation or silylation. Five metabolites (M1-M5) were detected. They were 1α-methyl-5α-androstan-3α-ol-17-one (M1), 1α-methyl-5α-androstan-3β-ol-17-one (M2), 1α-methyl-5α-androstane-3α,17β-diol (M3), 1α-methyl-5α-androstane-3β,17β-diol (M4), and 1α-methyl-5α-androstane-3,17-dione (M5). Of these in vitro metabolites, M1, M3, M4 and M5 were confirmed using authentic reference standards. M2 was tentatively identified by mass spectral comparison to M1.For the in vivo metabolic studies, Proviron® (20 tablets × 25 mg of mesterolone) was administered orally to two thoroughbred geldings. Pre- and post-administration urine samples were collected for analysis. Free and conjugated metabolites were isolated using solid-phase extraction and analysed by GC-MS as described for the in vitro studies. The results revealed that mesterolone was extensively metabolised and the parent drug was not detected in urine. Three metabolites detected in the in vitro studies, namely M1, M2 and M4, were also detected in post-administration urine samples. In addition, two stereoisomers each of 1α-methyl-5α-androstane-3,17α-diol (M6 and M7) and 1α-methyl-5α-androstane-3,16-diol-17-one (M8 and M9), and an 18-hydroxylated metabolite 1α-methyl-5α-androstane-3,18-diol-17-one (M10) were also detected. The metabolic pathway for mesterolone is postulated. These studies have shown that metabolites M8, M9 and M10 could be used as potential screening targets for controlling the misuse of mesterolone in horses.  相似文献   

2.
Clostebol acetate (4-chlorotestosterone acetate) is a synthetic anabolic steroid which may be used to enhance performance in racehorses. Studies on the in vitro biotransformation of clostebol acetate with horse liver microsomes were carried out. Six metabolites (C1 – C6) were detected. They were 4-chlorotestosterone (C1), 4-chloroandrost-4-en-3-ol-17-one (C2), 4-chloroandrost-4-ene-3,17-diol (C3), 4-chloroandrost-4-ene-3,17-dione (C4), 4-chloroandrost-4-en-6-ol-3,17-dione (C5) and 6-hydroxy-4-chlorotestosterone (C6). Clostebol acetate (350 mg) was administered orally to 2 thoroughbred geldings. The parent drug was not detected in post-administration urine, and only three metabolites C1, C3, and 4-chloroandrostane-3,17-diol (C7) were observed. The metabolic pathway for clostebol acetate is postulated. These studies have shown that metabolites C3 and C7 could be used as potential screening targets for controlling the abuse or misuse of clostebol acetate in racehorses.  相似文献   

3.
Fermentation of (+)-androst-4-ene-3,17-dione (1) with Curvularia lunata for 10 days yielded five oxidative and reductive metabolites, androsta-1,4-diene-3,17-dione (2), 17beta-hydroxyandrosta-1,4-dien-3-one (3), 11alpha-hydroxyandrost-4-ene-3,17-dione (4), 11alpha,17beta-dihydroxyandrost-4-en-3-one (5) and 15alpha-hydroxyandrosta-1,4-dien-17-one (6). The structures of these metabolites were elucidated on the basis of spectroscopic techniques. These microbially transformed products were assayed against the clinically important enzymes, tyrosinase and prolyl endopeptidase.  相似文献   

4.
Testosterone metabolism revisited: discovery of new metabolites   总被引:1,自引:0,他引:1  
The metabolism of testosterone is revisited. Four previously unreported metabolites were detected in urine after hydrolysis with KOH using a liquid chromatography–tandem mass spectrometry method and precursor ion scan mode. The metabolites were characterized by a product ion scan obtained with accurate mass measurements. Androsta-4,6-dien-3,17-dione, androsta-1,4-dien-3,17-dione, 17-hydroxy-androsta-4,6-dien-3-one and 15-androsten-3,17-dione were proposed as feasible structures for these metabolites on the basis of the mass spectrometry data. The proposed structures were confirmed by analysis of synthetic reference compounds. Only 15-androsten-3,17-dione could not be confirmed, owing to the lack of a commercially available standard. That all four compounds are testosterone metabolites was confirmed by the qualitative analysis of several urine samples collected before and after administration of testosterone undecanoate. The metabolite androsta-1,4-dien-3,17-dione has a structure analogous to that of the exogenous anabolic steroid boldenone. Specific transitions for boldenone and its metabolite 17β-hydroxy-5β-androst-1-en-3-one were also monitored. Both compounds were also detected after KOH treatment, suggesting that this metabolic pathway is involved in the endogenous detection of boldenone previously reported by several authors.  相似文献   

5.
The high resolution mass spectra (500 eV) of some α,β-unsaturated steroidal ketones have been studied and compared with the spectra of the corresponding α-chloromercuri ketones. In the latter, the carbon-mercury bond frequently remains intact at the expense of the fission of two carbon-carbon bonds. The abundance of mercury-containing ions allows the use of the mercury atom fingerprint in confirming ring B fragmentation of the steroid nucleus at C(6)–C(7) and C(9)–C(10) for 5α-androst-1-ene-3,17-dione, 1,4-androstadiene-3,17-dione and their 2-chloromercuri derivatives; and at C(7)–C(8) and C(9)–C(10) for 1,4,6-androstatriene-3,17-dione, 1,4,6-androstarien-17 β-ol-3-one and their 2-chloromercuri derivatives. 2-Chloromercuri-1,4,6-androstatriene-3,17-dione and 2-chloromercuri-1,4,6-androstatrien-17 β-ol-3-one also give an abundant ion as the result of ring C fragmentation at C(8)–C(14) and C(11)–C(12), the chloromercuri group being replaced by a hydrogen atom. This ring C cleavage gives the only recognizable distinctive fragmentation ion for 1,4,6-pregnatriene-3,20-dione and 2-chloromercuri-1,4,6-pregnatriene-3,20-dione. For most of the mercurated steroids, the low resolution mass spectra (70 eV) are reported. In these spectra, the fragmentation patterns are similar to those obtained using the higher ionization energy employed for the high resolution spectra.  相似文献   

6.
The UV. irradiation of 17 β-hydroxy-2-aza-4-androsten-3-one (1) , N-methyl-17 β-hydroxy-2-aza-4-androsten-3-one (3) , 17 β-hydroxy-4-aza-5 β-androst-1-en-3-one (2) and N-methyl-17 β-hydroxy-4-aza-5 β-androst-1-en-3-one (4) , gives rise to 1,10-seco (from 1 and 3 ) and 5, 10-seco (from 2 and 4 ) steroids.  相似文献   

7.
[2 beta,7,7,16 beta-2H4]16 alpha,19-Dihydroxyandrost-4-ene-3,17-dione (14) and [7,7,16 beta-2H3]3 beta,16 alpha,19-trihydroxyandrost-5-en-17-one (16), with high isotopic purity, respectively, were synthesized from unlabeled 3 beta-(tert-butyldimethylsiloxy)-androst-5-ene-17 beta-yl acetate (1). The deuterium introduction at C-7 was carried out by reductive deoxygenation of the 7-keto compound 3 with dichloroaluminum deuteride and that at C-2 beta and/or C-16 beta by controlled alkaline hydrolysis of 16-bromo-17-ketone 11 or 12 with NaOD in D2O and pyridine. [7,7-2H2]3 beta-Hydroxyandrost-5-en-17-one (6), obtained from compound 1 by a five-step sequence, was converted to compound 14 or 16 by an eight-step or seven-step sequence, respectively. The labeled steroids 14 and 16 are useful as internal standards for gas chromatography-mass spectrometry analysis of the endogenous levels.  相似文献   

8.
Norchlorotestosterone acetate (NClTA) is an anabolic steroid which resembles chlorotestosterone acetate. It cannot yet be detected by routine methods used for anabolic steroids, because there is no knowledge of its metabolic pathway. The invertebrate Neomysis integer has been used as an alternative model to study the metabolism of NClTA. The experimental results indicated the presence of 4-norchloroandrost-4-ene-17-ol-3-one (NClT) and 4-norchloroandrost-4-ene-3,17-dione (NorClAD) as possible metabolites of NClTA. Subsequently NClTA and the synthesised metabolites NClT and NorClAD were incorporated into the routine multi-residue method for detection of anabolic steroids in kidney fat, urine, and faeces.  相似文献   

9.
周维善  蔡峰  沈季铭 《化学学报》2001,59(4):604-609
18-甲基-11α-羟基腺甾-4-烯-3,17-双酮是合成高效口服避孕药的重要中间体。试用黑根霉酶羟化引进11α-羟基于18-甲基-19-失碳雌甾-4-烯-3,17-双酮,得到包括该化合物在内的几种不同位置羟基产物的混合物。改用赭曲霉酶羟化同一底物也得到包括11α-羟基在内的几种不同位置羟基产物的混合物。而用赭曲霉催化羟化18-甲基-17β-羟基腺甾-4-烯-3-酮时,首次得到15α-羟化的主要产物和7β羟化的次要产物。前者可用来合成另一类高效口服避孕药△^15-D-18-甲基炔诺酮。  相似文献   

10.
Methenolone (17β‐hydroxy‐1‐methyl‐5α‐androst‐1‐en‐3‐one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1‐methylene‐5α‐androstan‐3α‐ol‐17‐one) excreted conjugated with glucuronic acid using gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography mass spectrometry (LC‐MS) for the parent molecule, after hydrolysis with β‐glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC‐high resolution (HR)MS and the estimation of the long‐term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC‐HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti‐doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC‐HRMS using electrospray ionization in negative mode searching for [M‐H]? ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1‐methylene‐5α‐androstan‐3α‐ol‐17‐one, 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one and 16β‐hydroxy‐1‐methyl‐5α‐androst‐1‐ene‐3,17‐dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC‐HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC‐MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The anaerobic metabolism of deoxycholic acid by Pseudomonas sp. NCIB 10590 was studied. The metabolic pathway was similar to that operating under aerobic conditions with 12β-hydroxyandrosta-1,4-dien-3,17-dione as the major neutral product an metabolites which are not produced during aerobic metabolism were isolated and evidence is presented for the following structures: 9α-hydroxyandrost-1-en-3,17-dione, 12α,17)β-dihydroxyandrosta-1,4-dien-3-one; 3β,12β-dihydroxy-5β-androstan-17-one an formation and significance of the phenolic secosteroid is discussed.  相似文献   

12.
利用红外光谱、核磁共振氢谱、紫外光谱以及质谱等表征手段对一种新型蛋白同化激素(AAS)口服药物的主成分进行了研究和鉴定,推定主成分为甲基-1-睾酮(methyl-1-testosterone, M1T, 17β-hydroxy-17α-methyl-5α-androst-1-en-3-one)。在此基础上,建立了M1T的气相色谱-质谱联用检测方法。方法的检出限(信噪比(S/N)为3)为2 ng/mL,定量限(S/N=10)为10 ng/mL;7次平行测定前处理后的加内标尿样的相对标准偏差为9.8%。用该方法测定了该药物在尿样中的排泄曲线。该方法的建立为AAS新药的发现、检测和监控做了很有意义的基础研究工作。  相似文献   

13.
The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M?+?anion](-) adducts of these steroids revealed that fluoride adduct [M?+?F](-) precursors first lose HF to produce [M - H](-) and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d(4)-pregnenolone, are also discussed.  相似文献   

14.
Microbial hydroxylation of pregnenolone derivatives   总被引:1,自引:0,他引:1  
Pregnenolone and pregnenolone acetate were incubated with the fungi Cunninghamella elegans, Rhizopus stolonifer and Gibberella fujikuroi. Incubation of with C. elegans yielded metabolites, 3beta,7beta,11alpha-trihydroxypreg-5-en-20-one, 3beta,6alpha,11alpha,12beta,15beta-pentahydroxypreg-4-en-20-one and 3beta,6beta,11alpha-trihydroxypreg-4-en-20-one, while incubation with G. fujikuroi yielded two known metabolites, 3beta,7beta-dihydroxypregn-5-en-20-one and 6beta,15beta-dihydroxypreg-4-ene-3,20-dione. Metabolites and were found to be new. Fermentation of by C. elegans yielded four known oxidative metabolites, androsta-1,4-diene-3,17-dione, 6beta,15beta-dihydroxyandrost-4-ene-3,17-dione and 11alpha,15beta-dihydroxypreg-4-ene-3,20-dione. Fermentation of with R. stolonifer yielded two known metabolites, 11alpha-hydroxypreg-4-ene-3,20-dione and. Compounds were screened for their cholinesterase inhibitory activity in a mechanism-based assay.  相似文献   

15.
The microbial degradation of deoxycholic acid 1 by Pseudomonas NCIB 10590 has been studied and two major products have been isolated and identified as 12β-hydroxyandrosta-1,4-dien-3,17-dione 2 and 12α-hydroxypregna-1,4-dien-3-one-20-carboxylic acid 9. Three minor products were isolated and evidence is given for the following structures: 12α-hydroxyandrosta-1,4-dien-3,17-dione 4, 12β-hydroxyandrosta-4-en-3,17-dione 7 and 12?, 17?-dihydroxyandrosta-1,4-dien-3-one 8.  相似文献   

16.
In recent years products containing 6alpha-methylandrost-4-ene-3,17-dione have appeared on the sport supplement market. Scientific studies have proven aromatase inhibition and anabolic and mild androgenic properties; however, no preparation has been approved for medical use up to now. In sports 6alpha-methylandrost-4-ene-3,17-dione has to be classified as a prohibited substance according to the regulations of the World Anti-Doping Agency (WADA). For the detection of its misuse the metabolism was studied following the administration of two preparations obtained from the Internet (Formadrol and Methyl-1-Pro). Several metabolites as well as the parent compounds were synthesized and the structures of 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, 6alpha-methylandrost-4-ene-3,17-dione, and 5beta-dihydromedroxyprogesterone were confirmed by nuclear magnetic resonance (NMR) spectroscopy. The main metabolite, 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, was found to be excreted as glucuronide and was still detectable in microg/mL amounts until urine collection was terminated (after 25 h). Additionally, samples from routine human sports doping control had already tested positive for the presence of metabolites of 6alpha-methylandrost-4-ene-3,17-dione. Screening analysis can be easily performed by the existing screening procedure for anabolic steroids using 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one as target substance (limit of detection <10 ng/mL). Its discrimination from the closely eluting drostanolone metabolite, 3alpha-hydroxy-2alpha-methyl-5alpha-androstan-17-one, is possible as the mono-TMS derivative.  相似文献   

17.
Three chiral 5-(diphenylphosphanyl)-1,2,3,4-tetrahydroacridines, as first representative examples of a new class of chiral N,P-ligands were prepared from (+)-nopinone, (+)-camphor and 5α-androst-2-en-17-one. These ligands have been assessed in the enantioselective palladium-catalysed allylic substitution of 1,3-diphenylprop-2-enyl acetate with dimethyl malonate. Enantioselectivity up to 74% has been obtained.  相似文献   

18.
Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n?=?67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical power and certainty to distinguish between the endo- or exogenous origin of a urinary steroid.  相似文献   

19.
R. Jacquesy  H.L. Ung 《Tetrahedron》1977,33(19):2543-2549
In the hyperacid medium HF-SbF5, 3,17-dione androst-1,4-diene leads first to the expected 1-methyl estrone and 1-hydroxy 4-methyl estra-1,3,5(10)-triene-17-one in a 9:1 ratio. In a second step, 1-methyl estrone isomerises to the more stable 1-methyl(8α, 14β)estrone. Kinetic studies show the influence of anion structure on the rate of the Al step. The mechanism of the phenol-phenol isomerisation is substantiated through trapping the short-lived species involved in the reaction by hydrogen (or deuterium) donor. This reduction gives 1-methyl (5βH or D) estr-1-en-3,17-dione setting up a mechanism involving C-para (C-10) and C-ortho (C-4) diprotonation of the aromatic ring.  相似文献   

20.
采用各种柱色谱法从厚皮树(Lannea coromandelica)树皮的78%乙醇提取物中分离得到9个化合物。通过理化性质和波谱数据鉴定为:槲皮素-3-O-芸香糖苷(1),豆甾-4-烯-6β-醇-3-酮(2),蒲公英赛酮(3),蒲公英赛醇(4),乙酰蒲公英赛醇(5),5α-豆甾烷-3,6-二酮(6),β-谷甾醇(7),β-胡萝卜苷(8),香草醛(9)。除了化合物(7),其他化合物都是从该植物中首次分离得到。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号