首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   11篇
力学   1篇
物理学   3篇
  2018年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2000年   2篇
排序方式: 共有15条查询结果,搜索用时 194 毫秒
1.
Electrospray‐generated precursor ions usually follow the ‘even‐electron rule’ and yield ‘closed shell’ fragment ions. We characterize an exception to the ‘even‐electron rule.’ In negative ion electrospray mass spectrometry (ES‐MS), 2‐(ethoxymethoxy)‐3‐hydroxyphenol (2‐hydroxyl protected pyrogallol) easily formed a deprotonated molecular ion (M‐H)? at m/z 183. Upon low‐energy collision induced decomposition (CID), the m/z 183 precursor yielded a radical ion at m/z 124 as the base peak. The radical anion at m/z 124 was still the major fragment at all tested collision energies between 0 and 50 eV (Elab). Supported by computational studies, the appearance of the radical anion at m/z 124 as the major product ion can be attributed to the combination of a low reverse activation barrier and resonance stabilization of the product ions. Furthermore, our data lead to the proposal of a novel alternative radical formation pathway in the protection group removal of pyrogallol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
2.
3.
Reports of anticancer and immunosuppressive properties have spurred recent interest in the bacterially produced prodiginines. We use electrospray tandem mass spectrometry (ES-MS/MS) to investigate prodigiosin, undecylprodiginine, and streptorubin B (butyl-meta-cycloheptylprodiginine) and to explore their fragmentation pathways to explain the unusual methyl radical loss and consecutive fragment ions that dominate low-energy collision-induced dissociation (CID) mass spectra. The competition between the formation of even-electron ions and radical ions is examined in detail. Theoretical calculations are used to optimize the structures and calculate the energies of both reactants and products using the Gaussian 03 program. Results indicate that protonation occurs on the nitrogen atom that initially held no hydrogen, thus allowing formation of a pseudo-seven-membered ring that constitutes the most stable ground state [M + H](+) structure. From this precursor, experimental data show that methyl radical loss has the lowest apparent threshold but, alternatively, even-electron fragment ions can be formed by loss of a methanol molecule. Computational modeling indicates that methyl radical loss is the more endothermic process in this competition, but the lower apparent threshold associated with methyl radical loss points to a lower kinetic barrier. Additionally, this characteristic and unusual loss of methyl radical (in combination with weaker methanol loss) from each prodiginine is useful for performing constant neutral loss scans to quickly and efficiently identify all prodiginines in a complex biological mixture without any clean-up or purification. The feasibility of this approach has been proven through the identification of a new, low-abundance prodigiosin analog arising from Hahella chejuensis.  相似文献   
4.
Collision-induced dissociation of complexes of Cu+ bound to a variety of N-donor ligands (N-L) with Xe is studied using guided ion beam tandem mass spectrometry. The N-L ligands examined include pyridine, 4,4-dipyridyl, 2,2-dipyridyl, and 1,10-phenanthroline. In all cases, the primary and lowest-energy dissociation channel observed corresponds to the endothermic loss of a single intact N-L ligand. Sequential dissociation of additional N-L ligands is observed at elevated energies for the pyridine and 4,4-dipyridyl complexes containing more than one ligand. Ligand exchange processes to produce Cu+Xe are also observed as minor reaction pathways in several systems. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, the kinetic and internal energy distributions of the reactants, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the neutral N-L ligands and the Cu+(N-L)x complexes. The relative stabilities of the various conformations of these N-L ligands and Cu+(N-L)x complexes as well as theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G* optimized geometries. Excellent agreement between theory and experiment is observed for all complexes containing one or two N-L ligands, while theory systematically underestimates the strength of binding for complexes containing more than two N-L ligands. The ground-state structures of these complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd-hybridization and repulsive ligand-ligand interactions. The nature of the binding interactions in the Cu+(N-L)x complexes are examined via natural bond orbital analyses.  相似文献   
5.
Review of nanofluids for heat transfer applications   总被引:2,自引:0,他引:2  
Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first repotted about a decade ago,though much controversy and inconsistency have been reported,and insufficient understanding of the formulation and mechanism of nanofluids further limits their applications.This work presents a critical review of research on heat transfer applications of nanofluids with the aim of identifying the limiting factors so as to push forward their further development.  相似文献   
6.
本文利用荧光光谱和园二色光谱了新开花粉蛋白的盐酸胍去折叠过程。结果显示:新开花粉蛋白的盐酸胍去折叠是一个只包含天然蛋白和变性终态的二态过程,与已经报道的天花粉蛋白的盐酸胍去折叠的过程不同。  相似文献   
7.
Active vaccination can be effective as a post-exposure prophylaxis, but the rapidity of the immune response induced, relative to the incubation time of the pathogen, is critical. We show here that CD40mAb conjugated to antigen induces a more rapid specific antibody response than currently used immunological adjuvants, alum and monophosphoryl lipid A™.  相似文献   
8.
Hydrolysis of the asymmetric pyridine- and phenol-containing ligand HL (1) (2-hydroxy-4-6-di- tert-butylbenzyl-2-pyridylmethyl)imine) led to the use of bis-(3,5-di -tert-butyl-2-phenolato-benzaldehyde)copper(II), [Cu (II)(L (SAL)) 2] ( 1) as a precursor for bis-(2,4-di- tert-butyl-6-octadecyliminomethyl-phenolato)copper(II), [Cu (II)(L (2)) 2] ( 3), bis-(2,4-di- tert-butyl-6-octadecyl aminomethyl-phenolato)copper(II), [Cu (II)(L (2A)) 2] ( 3'), and bis-(2,4-di- tert-butyl-6-[(3,4,5-tris-dodecyloxy-phenylimino)-methyl]-phenolato)copper(II), [Cu (II)(L (3)) 2] ( 4). These complexes exhibit hydrophilic copper-containing head groups, hydrophobic alkyl and alkoxo tails, and present potential as precursors for redox-responsive Langmuir-Blodgett films. All systems were characterized by means of elemental, spectrometric, spectroscopic, and electrochemical techniques, and their amphiphilic properties were probed by means of compression isotherms and Brewster angle microscopy. Good redox activity was observed for 3 with two phenoxyl radical processes between 0.5 and 0.8 V vs Fc (+)/Fc, but this complex lacks amphiphilic behavior. To attain good balance between redox response and amphiphilicity, increased core flexibility in 3' and incorporation of alkoxy chains in 4 were attempted. Film formation with collapse at 14 mN.m (-1) was observed for the alkoxy-derivative but redox-response was seriously compromised. Core flexibility improved Langmuir film formation with a higher formal collapse and showed excellent cyclability of the ligand-based processes.  相似文献   
9.
The solvation of Cu+ by methanol (MeOH) was studied via examination of the kinetic energy dependence of the collision-induced dissociation of Cu+(MeOH)x complexes, where x = 1-6, with Xe in a guided ion beam tandem mass spectrometer. In all cases, the primary and lowest-energy dissociation channel observed is the endothermic loss of a single MeOH molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of multiple ion-neutral collisions, kinetic and internal energy distributions of the reactants, and lifetimes for dissociation. Density functional theory calculations at the B3LYP/6-31G* level are performed to obtain model structures, vibrational frequencies, and rotational constants for the Cu+(MeOH)x complexes and their dissociation products. The relative stabilities of various conformations and theoretical BDEs are determined from single-point energy calculations at the B3LYP/6-311+G(2d,2p) level of theory using B3LYP/6-31G*-optimized geometries. The relative stabilities of the various conformations of the Cu+(MeOH)x complexes and the trends in the sequential BDEs are explained in terms of stabilization gained from sd hybridization, hydrogen-bonding interactions, electron donor-acceptor natural bond orbital stabilizing interactions, and destabilization arising from ligand-ligand repulsion.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号