首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The production of periodic structures in silicon wafers by four-beam is presented. Because laser interference ablation is a single-step and cost-effective process, there is a great technological interest in the fabrication of these structures for their use as antireflection surfaces. Three different laser fluences are used to modify the silicon surface (0.8 J cm−2, 1.3 J cm−2, 2.0 J cm−2) creating bumps in the rim of the irradiated area. Laser induced periodic surface structures (LIPSS), in particular micro and nano-ripples, are also observed. Measurements of the reflectivity show a decrease in the reflectance for the samples processed with a laser fluence of 2.0 J cm−2, probably caused by the appearance of the nano-ripples in the structured area, while bumps start to deteriorate.  相似文献   

2.
Nucleation, as an important stage of freezing process, can be induced by the irradiation of power ultrasound. In this study, the effect of irradiation temperature (−2 °C, −3 °C, −4 °C and −5 °C), irradiation duration (0 s, 1 s, 3 s, 5 s, 10 s or 15 s) and ultrasound intensity (0.07 W cm−2, 0.14 W cm−2, 0.25 W cm−2, 0.35 W cm−2 and 0.42 W cm−2) on the dynamic nucleation of ice in agar gel samples was studied. The samples were frozen in an ethylene glycol-water mixture (−20 °C) in an ultrasonic bath system after putting them into tubing vials. Results indicated that ultrasound irradiation is able to initiate nucleation at different supercooled temperatures (from −5 °C to −2 °C) in agar gel if optimum intensity and duration of ultrasound were chosen. Evaluation of the effect of 0.25 W cm−2 ultrasound intensity and different durations of ultrasound application on agar gels showed that 1 s was not long enough to induce nucleation, 3 s induced the nucleation repeatedly but longer irradiation durations resulted in the generation of heat and therefore nucleation was postponed. Investigation of the effect of ultrasound intensity revealed that higher intensities of ultrasound were effective when a shorter period of irradiation was used, while lower intensities only resulted in nucleation when a longer irradiation time was applied. In addition to this, higher intensities were not effective at longer irradiation times due to the heat generated in the samples by the heating effect of ultrasound. In conclusion, the use of ultrasound as a means to control the crystallization process offers promising application in freezing of solid foods, however, optimum conditions should be selected.  相似文献   

3.
The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 × 10−11 mol/cm2) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm2. The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108° to 41° and the surface free energy increased from 22.1 × 10−5 to 62.1 × 10−5 N cm−1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film.  相似文献   

4.
Adsorption of carbon dioxide on a faujasite-type H-Y zeolite (Si:Al = 2.6:1) was studied by variable-temperature (200-290 K range) infrared spectroscopy. Adsorbed CO2 molecules interact with the Brønsted acid Si(OH)Al groups located inside the zeolite supercage, bringing about a characteristic bathochromic shift of the O-H stretching mode from 3645 cm−1 (free OH group) to 3540 cm−1 (hydrogen-bonded CO2 adsorption complex). Simultaneously, the asymmetric (ν3) mode of adsorbed CO2 is observed at 2353 cm−1. From the observed variation of the integrated intensity of the 3645 and 2353 cm−1 IR absorption bands upon changing temperature, corresponding values of standard adsorption enthalpy and entropy were found to be ΔH° = −28.5(±1) kJ mol−1 and ΔS° = −129(±10) J mol−1 K−1. Comparison with the reported values of ΔH° for CO2 adsorption on other zeolites is briefly discussed.  相似文献   

5.
Three quantitative methods, namely profilometry, high speed imaging and recoil momentum measurements using a ballistic pendulum, are used to determine the interplay of vaporization, melt displacement and melt ejection on nanosecond laser induced material removal. At low to moderate fluences (<7 J cm−2) material removal occurs via vaporization and melt displacement in aluminium. At high fluences (>7 J cm−2), material removal occurs predominantly via the explosive ejection of liquid droplets from the melt pool.  相似文献   

6.
Using cherry stones, the preparation of activated carbon has been undertaken in the present study by chemical activation with potassium hydroxide. A series of KOH-activated products was prepared by varying the carbonisation temperature in the 400-900 °C range. Such products were characterised texturally by gas adsorption (N2, −196 °C), mercury porosimetry, and helium and mercury density measurements. FT-IR spectroscopy was also applied. The carbons prepared as a rule are microporous and macroporous solids. The degree of development of surface area and porosity increases with increasing carbonisation temperature. For the carbon heated at 900 °C the specific surface area (BET) is 1624 m2 g−1, the micropore volume is 0.67 cm3 g−1, the mesopore volume is 0.28 cm3 g−1, and the macropore volume is 1.84 cm3 g−1.  相似文献   

7.
Single- and multi-shot ablation thresholds of gold films in the thickness range of 31-1400 nm were determined employing a Ti:sapphire laser delivering pulses of 28 fs duration, 793 nm center wavelength at 1 kHz repetition rate. The gold layers were deposited on BK7 glass by an electron beam evaporation process and characterized by atomic force microscopy and ellipsometry. A linear dependence of the ablation threshold fluence Fth on the layer thickness d was found for d ≤ 180 nm. If a film thickness of about 180 nm was reached, the damage threshold remained constant at its bulk value. For different numbers of pulses per spot (N-on-1), bulk damage thresholds of ∼0.7 J cm−2 (1-on-1), 0.5 J cm−2 (10-on-1), 0.4 J cm−2 (100-on-1), 0.25 J cm−2 (1000-on-1), and 0.2 J cm−2 (10000-on-1) were obtained experimentally indicating an incubation behavior. A characteristic layer thickness of Lc ≈ 180 nm can be defined which is a measure for the heat penetration depth within the electron gas before electron-phonon relaxation occurs. Lc is by more than an order of magnitude larger than the optical absorption length of α−1 ≈ 12 nm at 793 nm wavelength.  相似文献   

8.
Ni-Co films with different compositions and microstructures were produced on ITO glasses by electrodeposition from sulphate bath at 25 °C. Cyclic voltammograms give a result that the increase in the Co2+ concentration displaces Ni-Co alloy oxidation peaks to negative potential with high Co current distributions. It is observed that the content of cobalt in the films increases from 22.42% to 56.09% as the molar ratio of CoSO4/NiSO4 varying from 0.015/0.085 to 0.045/0.055 in electrolyte. XRD patterns reveal that the structure of the films strongly depends on the Co content in the deposited films. The saturation magnetization (Ms) moves up from 144.84 kA m−1 to 342.35 kA m−1 and coercivity (Hc) falls from 15.27 kA m−1 to 7.27 kA m−1 with the heat treatment temperature increasing from 25 °C to 450 °C. The saturation magnetization (Ms) and coercivity (Hc) move up from 340.97 kA m−1 and 7.98 kA m−1 to 971.58 kA m−1 and 18.62 kA m−1 with the Co content increasing from 22.42% to 56.09% after annealing at 450.  相似文献   

9.
Crystallization in the melt-quenched (MQ) and mechanically milled (MM) superionic systems has been thoroughly investigated using differential scanning calorimetry, X-ray diffraction and electrical conductivity measurements. It is observed that the two systems obey different crystallization processes. The conventionally melt-quenched samples exhibit only one crystallization peak near 112 °C, whereas, the mechanochemically synthesized samples show two well-separated crystallization peaks at Tcl∼75-97 °C and Tc2∼132±2 °C. The higher value of electrical conductivity in the mechanochemically synthesized samples (∼10−2 Ω−1 cm−1 at 300 K) than the melt-quenched samples is attributed to the higher value of disorder (entropy) in the former.  相似文献   

10.
In this study, the effect of ultraviolet light (UV) irradiation and water spray on color, contact angle and surface chemistry of treated wood was studied. Southern pine sapwood (Pinus Elliottii.Engelm.) treated with copper ethanolamine (Cu-MEA) was subjected to artificially accelerated weathering with a QUV Weathering Tester. The compositional changes and the surface properties of the weathered samples were characterized by Fourier transform infrared (FTIR) spectroscopy, color and contact angle measurements. FTIR indicated that MEA treatment was not found to slow down wood weathering. FTIR spectrum of MEA-treated sample was similar to that of the untreated SP. However, the Cu-MEA treatment retarded the surface lignin degradation during weathering. The main changes in FTIR spectrum of Cu-MEA treatment took place at 915, 1510, and 1595 cm−1. The intensity of the bands at 1510 and 1595 cm−1 increased with the Cu-MEA treatment. Both untreated and MEA-treated exhibited higher ΔE than the Cu-MEA treated samples, indicating that MEA treatment did not retard color changes. However, ΔE decreased with increasing copper concentration, suggesting a positive contribution of Cu-EA to wood color stability. The contact angle of untreated and MEA-treated samples changed rapidly, and dropped from 75 ± 5° to 0° after artificial weathering up to 600 h. Treatment with Cu-MEA slowed down the decreasing in contact angle. As the copper concentration increases, the rate of change in contact angle decreases.  相似文献   

11.
Using a field emission gun based scanning electron microscopy, we report the formation of nanodots on the InP surfaces after bombardment by 100 keV Ar+ ions under off-normal ion incidence (30° and 60° with respect to the surface normal) condition in the fluence range of 1 × 1016 to 1 × 1018 ions cm−2. Nanodots start forming after a threshold fluence of about 1 × 1017 ions cm−2. It is also seen that although the average dot diameter increases with fluence the average number of dots decreases with increasing fluence. Formation of such nanostructured features is attributed due to ion-beam sputtering. X-ray photoelectron spectroscopy analysis of the ion sputtered surface clearly shows In enrichment of the sputtered InP surface. The observation of growth of nanodots on the Ar+-ion sputtered InP surface under the present experimental condition matches well with the recent simulation results based on an atomistic model of sputter erosion.  相似文献   

12.
Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10−6 mbar in the temperature range from 400 to 800 °C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J × cm−2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated.Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.  相似文献   

13.
The grain boundary groove shapes for solid aminomethylpropanediol in equilibrium with eutectic aminomethylpropanediol-neopentylglycol liquid were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of solid aminomethylpropanediol in equilibrium with eutectic aminomethylpropanediol-neopentylglycol liquid have been determined to be (5.3 ± 0.5) × 10−8 K m, (8.5 ± 1.3) × 10−3 J m−2 and (16.8 ± 2.9) × 10−3 J m−2, respectively.  相似文献   

14.
Growth characteristics and surface morphology of boron carbide films fabricated by ablating a B4C target in high vacuum with a traditional KrF excimer laser and a high brightness hybrid dye/excimer laser system emitting at the same wavelength while delivering 700 fs pulses are compared. The ultrashort pulse processing is highly effective. Energy densities between 0.25 and 2 J cm−2 result in apparent growth rates ranging from 0.017 to 0.085 nm/pulse. Ablation with nanosecond pulses of one order of magnitude higher energy densities yields smaller growth rates, the figures increase from 0.002 to 0.016 nm/pulse within the 2-14.3 J cm−2 fluence window. 2D thickness maps derived from variable angle spectroscopic ellipsometry reveal that, when ablating with sub-ps pulses, the spot size rather than the energy density determines both the deposition rate and the angular distribution of film material. Pulse shortening leads to significant improvement in surface morphology, as well. While droplets with number densities ranging from 1 × 104 to 7 × 104 mm−2 deteriorate the surface of the films deposited by the KrF excimer laser, sub-ps pulses produce practically droplet-free films. The absence of droplets has also a beneficial effect on the stoichiometry and homogeneity of the films fabricated by ultrashort pulses.  相似文献   

15.
The Ce6−xYxMoO15−δ solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15−δ ranging from 5.9×10−5 (S cm−1) at 300 °C to 1.3×10−2 (S cm−1) at 650 °C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 °C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.  相似文献   

16.
Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m2 g−1, Vmi of 0.39 cm3 g−1 and a iodine retention capacity of 429.3 mg g−1): carbon C (gasification with CO2 at 850 °C during 1 h), with SBET of 523 m2 g−1, Vmi of 0.33 cm3 g−1 and a iodine retention capacity of 402.5 mg g−1, and carbon D (gasification with CO2 at 900 °C during 1 h), whose SBET is 672 m2 g−1, Vmi is 0.28 cm3 g−1 and has a iodine retention capacity of 345.2 mg g−1.  相似文献   

17.
We report a study of InSb nanoobjects (quantum dots and quantum rings) grown on InAs-rich surface by liquid phase epitaxy. Characterization of the sample surface was performed using atomic force microscopy (AFM). The bimodal formation of the uncapped InSb quantum dots (QDs) was observed for the growing on a binary InAs substrate. Uniform high-density (1 × 1010 cm−2) quantum dots with a height of 3 nm were obtained at T = 420-430 °C, whereas low-density (5 × 108 cm−2) big quantum dots were 9 nm in height. As a buffer layer, lattice-matched InAsSb0.12P0.25 solid solution was deposed on InAs substrate using metal-organic vapour phase epitaxy. Deposition from the InSb melt on the buffer layer resulted in the formation of InSb nanoobjects with density as high as 3 × 1010 cm−2.  相似文献   

18.
Creation of laser-induced morphology features, particularly laser-induced periodic surface structures (LIPSS), by a 532 nm picosecond Nd:YAG laser on crystalline silicon is reported. The LIPSS, often termed ripples, were produced at average laser irradiation fluences of 0.7, 1.6, and 7.9 J cm−2. Two types of ripples were registered: micro-ripples (at micrometer scale) in the form of straight parallel lines extending over the entire irradiated spot, and nano-ripples (at nanometer scale), apparently concentric, registered only at the rim of the spot, with the periodicity dependent on laser fluence. There are indications that the parallel ripples are a consequence of the partial periodicity contained in the diffraction modulated laser beam, and the nano-ripples are very likely frozen capillary waves. The damage threshold fluence was estimated at 0.6 J cm−2.  相似文献   

19.
Peng Ju 《Journal of luminescence》2011,131(8):1724-1730
The interaction between flower-like CdSe nanostructure particles (CdSe NP) and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, CdSe NP could effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constant (KA) was 6.38, 3.27, and 1.90×104 M−1 at 298, 304, and 310 K, respectively and the number of binding sites was 1.20. According to the Van't Hoff equation, the thermodynamic parameters (ΔH°=−77.48 kJ mol−1, ΔS°=−168.17 J mol−1 K−1) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA−CdSe complex. Besides, UV-vis and circular dichroism (CD) results showed that the addition of CdSe NP changed the secondary structure of BSA and led to a decrease in α-helix. These results suggested that BSA underwent substantial conformational changes induced by flower-like CdSe nanostructure particles.  相似文献   

20.
A noncollinear-ferromagnetic spin-glass-like state was observed in Tb55Co20Al25 bulk metallic glass due to the strong random magnetic anisotropy. Associated with this behavior, we observed a comparatively large magnetic entropy change (ΔSm is 9.75 J K−1 kg−1) in a field change of 7 T and a correspondingly high value of the magnetic refrigeration capacity (RC is 540 J kg−1) with almost no hysteresis loss in the vicinity of the so-called Curie temperature. This opens the possibility of using this material for magnetic cooling purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号