首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sulfonated palladium(II) N‐heterocyclic carbene complex PdII(NHC)SO3?, supported on poly(4‐vinylpyridinium chloride), was used as a heterogeneous, recyclable and active catalyst for the Suzuki–Miyaura reaction. This catalyst was applied for coupling of various aryl halides with phenylboronic acid and the corresponding products were obtained in excellent yields and short reaction times. The catalyst was characterized using Fourier transform infrared and diffuse reflectance UV–visible spectroscopies, scanning electron microscopy and elemental analysis. After each reaction, the catalyst was recovered easily by simple filtration and reused several times without significant loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Copper(I) oxide nanoparticles supported on magnetic casein (Cu2O/Casein@Fe3O4NPs) has been synthesized as a bio‐supported catalyst and was characterized using powder X‐ray diffraction, transmission electron microscopy, energy dispersive X‐ray and Fourier transform infrared spectroscopies, thermogravimetric analysis and inductively coupled plasma optical emission spectrometry. The catalytic activity of the synthesized catalyst was investigated in one‐pot three‐component reactions of alkyl halides, sodium azide and alkynes to prepare 1,4‐disubstituted 1,2,3‐triazoles with high yields in water. The reaction work‐up is simple and the catalyst can be magnetically separated from the reaction medium and reused in subsequent reactions.  相似文献   

3.
杨元法  庄明  曾朝霞  黄朝表  罗孟飞 《中国化学》2006,24(10):1309-1314
The ethylenediamine-functionalized resin-supported Pd(0)complex was prepared from PdCl_2 and ethylenedia-mine-functionalized chloromethylated polystyrene,followed by reduction with KBH_4.The complex was character-ized by FT-IR,XRD,BET,SEM and EDS.The resin-supported catalyst exhibited high catalytic activity in theHeck reaction and could be reused up to 17 times in NMP or 16 times in DMF at 90 ℃ in the Heck reaction of io-dobenzene with acrylic acid.The leaching investigation disclosed that the palladium leaching was caused by the in-teraction of iodobenzene with the metal Pd(0)on supported catalyst.The leached palladium species in filtrate wasvery stable and could be reused five times after the solid catalyst was filtered off.A cross-transfer test in recyclingin the presence of additional carbon disclosed that the soluble leached palladium species had much higher catalyticactivity than supported and/or adsorbed palladium in solid-solution heterogeneous Heck reaction.  相似文献   

4.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

5.
Molecular Sieves (MS) were used as a recyclable support for atom transfer radical polymerization. The catalyst complex, CuBr2/ligand was supported on hydrated MS and used for the polymerization of benzyl methacrylate at room temperature in anisole. The polymerization using CuBr2/PMDETA (pentamethyl diethyltetraamine) catalyst that is physically held by the hydration of MS exhibited moderate control and produced catalyst free polymers (<0.1 ppm) with narrow molecular weight distribution (Mw/Mn ≤ 1.33). The polymerization occurred at the interface between the hydrated support and the solution containing initiator and monomer. The hydrated MS supported catalyst was recycled efficiently without a significant loss in activity. The polymerization proceeded in a “living”/controlled manner as was evident from first‐order time conversion plots. The split kinetics experiment affirmed that there was no propagation in the solution in the absence of the supported catalyst. The reaction order plot showed zero‐order dependence on the bulk initiator concentration in solution. The results of MS supported catalyst were compared to Na‐clay supported catalyst system and the improved results were attributed to high self‐diffusion coefficient and low diffusion activation energy of water on its surface. Published 2017.§ J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3875–3883  相似文献   

6.
Polysiloxane microspheres containing a large number of silanol groups were obtained by an emulsion process of modified polyhydromethylsiloxane. N‐substituted imidazole groups were grafted on these microspheres by the silylation of their silanol groups with N‐[γ‐(dimethylchlorosilyl)propyl]imidazole hydrochloride. The progress of the reaction was monitored using 29Si and 13C magic angle spinning (MAS) NMR and its impact on microsphere morphology was studied using scanning electron microscopy (SEM). The usefulness of the imidazole‐functionalized microspheres as a support for a metal catalyst was demonstrated by their reaction with PdCl2(PhCN)2. In this way a new heterogenized catalyst, Pd(II) complex with imidazole ligands supported on polysiloxane microspheres, was generated. This catalyst, MPd , was characterized using 13C and 29Si MAS NMR, X‐ray photoelectron, Fourier transform infrared and far‐infrared spectroscopies, X‐ray diffraction, SEM–energy‐dispersive X‐ray spectroscopy and wide‐angle X‐ray scattering. The catalyst appears in two structures, as Pd(II) complex and Pd(0) nanoclusters. Its catalytic activity was tested using a model reaction, the hydrogenation of cinnamaldehyde, and compared with that of an analogous complex operating in a homogeneous system. MPd showed a high activity in the promotion of hydrogenation of cinnamaldehyde. The activity in the substrate conversion was stable at least in five cycles of this reaction. The main product was hydrocinnamaldehyde which could be obtained with a yield above 70%. A mechanism of the reaction is proposed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We report the first tunable bifunctional surface of silica–alumina‐supported tertiary amines (SA–NEt2) active for catalytic 1,4‐addition reactions of nitroalkanes and thiols to electron‐deficient alkenes. The 1,4‐addition reaction of nitroalkanes to electron‐deficient alkenes is one of the most useful carbon–carbon bond‐forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA‐supported amine (SA–NEt2) catalyst enabled selective formation of a double‐alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA–NEt2 catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA–NEt2 catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron‐deficient alkenes. The solid‐state magic‐angle spinning (MAS) NMR spectroscopic analyses, including variable‐contact‐time 13C cross‐polarization (CP)/MAS NMR spectroscopy, revealed that acid–base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid–base interactions.  相似文献   

8.
Tungstate ions supported on the periodic mesoporous organosilica with ionic liquid frameworks (WO4=@PMO-IL) were found to be a recoverable catalyst system for the highly selective oxidation of various primary or secondary alcohols to the corresponding aldehydes or ketones by 30% H2O2 as green oxidant under neutral aqueous reaction conditions. The catalyst can be also recovered and efficiently reused in seven subsequent reaction cycles without any remarkable decreasing in the catalyst activity and selectivity. Moreover, N2 sorption analysis, transmission electron microscopy (TEM) images, and thermal gravimetric analysis (TGA) showed that the structure regularity and functional groups loaded of the catalyst were not affected during the reaction process.  相似文献   

9.

Zinc salicylaldimine complex immobilized on silica gel was used as a promising catalyst for the transesterification reaction of dimethyl terephthalate (DMT) and ethylene glycol (EG).The catalyst was characterized by Fourier transform infra‐red spectroscopy (FT‐IR), thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). The product bis‐(2‐hydroxyethyl)terephthalate (BHET)was confirmed by mass and 1H‐NMR studies. In comparison to zinc acetate i.e., homogeneous catalyst, a polymer supported catalyst showed better stability, catalytic activity and ease of separation from the reaction product. The catalyst can be reutilized during successive catalytic cycles.  相似文献   

10.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

11.
Mixed valent Pd(0)/Pd(II) nano‐sized aggregates supported onto a chemically robust layered zirconium carboxyphosphonate framework is prepared and its catalytic activity in Suzuki‐Miyaura cross coupling reaction is explored. The exceptionally high catalytic efficacy of the heterogeneous catalyst in Suzuki‐Miyaura cross coupling reaction is signified by remarkably short reaction time 2 minutes and high turnover frequency of 1.3 x 104 hr?1. The catalyst can be recycled several times without significant loss of catalytic efficacy, while spectroscopic, structural and microscopic investigations suggest the integrity of the catalyst even after fifth catalytic cycle. The unique ability of the zirconium carboxyphosphonate framework to interact strongly with palladium in dual Pd(0)/Pd(II) oxidation states has been attributed to this remarkable augmentation of catalytic efficacy.  相似文献   

12.
The hydroxide‐exchange membrane fuel cell (HEMFC) is a promising energy conversion device. However, the development of HEMFC is hampered by the lack of platinum‐group‐metal‐free (PGM‐free) electrocatalysts for the hydrogen oxidation reaction (HOR). Now, a Ni catalyst is reported that exhibits the highest mass activity in HOR for a PGM‐free catalyst as well as excellent activity in the hydrogen evolution reaction (HER). This catalyst, Ni‐H2‐2 %, was optimized through pyrolysis of a Ni‐containing metal‐organic framework precursor under a mixed N2/H2 atmosphere, which yielded carbon‐supported Ni nanoparticles with different levels of strains. The Ni‐H2‐2 % catalyst has an optimal level of strain, which leads to an optimal hydrogen binding energy and a high number of active sites.  相似文献   

13.
MCM‐41‐supported tridentate nitrogen palladium(II) complex [MCM‐41‐3 N‐Pd(II)] was conveniently synthesized from commercially available and cheap 3‐(2‐aminoethylamino)propyltrimethoxysilane via immobilization on MCM‐41, followed by reacting with pyridine‐2‐carboxaldehyde and PdCl2. It was found that this palladium complex is an excellent catalyst for the Suzuki–Miyaura coupling reaction of aryl bromides on two points: (i) the use of 5 × 10−4 mol equiv. of MCM‐41‐3 N‐Pd(II) under air afforded the coupling products efficiently after easy workup; (2) the catalyst can be reused many times without loss of catalytic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The mixed resins, Dowex MR‐3 and MR‐12, in the H+/Cl form, and the cation resin, Dowex‐50W, in the H+ form, were used as a support for some metal chromate and phosphate salts. Similarly, anionic resin, Amberlite IRA‐400, in the Cl form, was used as a support for some metal chromate salts. The activity of these metal salt‐supported on four different resins toward hydrogen peroxide decomposition was investigated. The decomposition of H2O2, with these catalysts, was found to follow first‐order kinetics with respect to [H2O2]. Factors that affected the rate of reaction, such as mesh size of the support, amount of supported salt, and the electrostatic interactions, were investigated. With Ag(I)‐chromate supported on mixed resin MR‐3 in the Ag+/NO3 form, the rate of reaction was greater than that with the mixed resin MR‐12 in the same form. Moreover, the rate with Ag(I) chromate supported on the anion resin IRA‐400 in the R‐NO3 form was greater than mixed resins. Also, the rate with Fe(III) chromate supported on Amberlite IRA‐400 in the R‐CrO42− form was greater than other counter‐anionic forms as well as Dowex‐50W resin in the metal ion form. However, Fe(III)‐chromate supported on cation resin R‐Fe3+ showed greater activity than other cationic forms. On the other hand, the rate with MR‐3 resin in the Na+/PO43− form was greater than that in the presence of supported Fe(III) phosphate. However, the rate of reaction increased when Fe(III) was replaced by Ba(II). Iron(III) phosphate supported on Dowex‐50W resin in the Na+ form showed greater activity compared to MR‐3 resin in the Na+/PO43− form. In the case of Fe(III) phosphate supported on mixed resin MR‐12, the rate was much greater than that with unsupported resin. However, when Ba(II) phosphate was incorporated instead of Fe(III) phosphate, the rate of reaction increased considerably. The activity of Fe(III) chromate is greater than that of Fe(III) phosphate supported on the same cation resin. Activation parameters were evaluated and a probable reaction mechanism was proposed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 667–675, 2000  相似文献   

15.
In the present work, tetrakis(p-aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], supported on chloromethylated polystyrene was prepared and characterized by elemental analysis, FT IR and diffuse reflectance UV-Vis spectroscopic methods. This new heterogenized catalyst was used for acetylation of alcohols and phenols with acetic anhydride in short reaction times and high yields. The catalyst is of high reusability and stability in the acetylation reactions and was recovered several times without loss of its initial activity and catalyst leaching.  相似文献   

16.
The catalysis of a silica‐supported chromium system {Cr[CH(SiMe3)2]3/SiO2} was compared with a silica‐supported chromium oxide catalyst, the Phillips catalyst (CrO3/SiO2). This catalyst was prepared by the calcining of the typical silica support used for the Phillips catalyst at 600 °C and by the support of tris[bis(trimethylsilyl)methyl]chromium(III) {Cr[CH(SiMe3)2]3} on the silica. In the slurry‐phase polymerization, this catalyst conducted the polymerization of ethylene at a high activity without organoaluminum compounds as cocatalysts or scavengers. The activity per Cr was about 6–7 times higher than that of the Phillips catalyst. Upon the introduction of hydrogen to the system, the molecular weight of polyethylene did not change with the Phillips catalyst, but it decreased with the Cr[CH(SiMe3)2]3/SiO2 catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 413–419, 2003  相似文献   

17.
A new heterogeneous catalyst derived from gold (III) and supported on caffeine‐coated magnetic nanoparticles, Fe3O4@Caff‐Au, has been prepared and characterized using different techniques. This magnetic gold composite shows high catalytic activity in A3 coupling reactions of terminal alkynes, aldehydes and secondary amines. Using this green catalyst, propargylamines are obtained in high turnover frequency in short reaction times using water as solvent at room temperature. This stable and ready accessible catalyst can be easily recycled magnetically for at least nine consecutive runs without significant loss of activity and with slight aggregation of Au species.  相似文献   

18.
A series of water‐insoluble iron(III) and manganese(III) porphyrins, FeT(2‐CH3)PPCl, FeT(4‐OCH3)PPCl, FeT(2‐Cl)PPCl, FeTPPCl, MnT(2‐CH3)PPOAc, MnT(4‐OCH3)PPOAc, MnT(2‐Cl)PPOAc and MnTPPOAc, in the presence of imidazole (ImH), F?, Cl?, Br? and acetate were used as catalysts for the aqueous‐phase heterogeneous oxidation of styrenes to the corresponding epoxides and aldehydes with sodium periodate. Also, the effect of various reaction parameters such as reaction time, molar ratio of catalyst to axial base, type of axial base, molar ratio of olefin to oxidant and nature of metal centre on the activity and oxidative stability of the catalysts and the product selectivity was investigated. Higher catalytic activities were found for the iron complexes. Interestingly, the selectivity towards the formation of epoxide and aldehyde (or acetophenone) was significantly influenced by the type of axial base. Furthermore, Br? and ImH were found to be the most efficient co‐catalysts for the oxidation of olefins performed in the presence of the manganese and iron porphyrins, respectively. The optimized molar ratio of catalyst to axial base was different for various axial bases. Also, the order of co‐catalyst activity of the axial bases obtained in aqueous medium was different from that reported for organic solvents. The use of a convenient axial base under optimum reaction catalyst to co‐catalyst molar ratio in the presence of the manganese porphyrin gave the oxidative products with a conversion of ca 100% in a reaction time of less than 3 h. However, the catalytic activity of the iron porphyrins could not be effectively improved by increasing the catalyst to co‐catalyst molar ratio.  相似文献   

19.
An efficient magnetic nanoparticle‐supported palladium (Fe3O4/SiO2‐PAP‐Pd) catalyst is reported for the Suzuki cross‐coupling and Stille reactions. This method provides a novel and much improved modification of the Suzuki and Stille coupling reactions in terms of phosphine‐free catalyst, short reaction time, clean reaction and small quantity of catalyst. Another important feature of this method is that the catalyst can be easily recovered from the reaction mixture and reused with no loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Poly(glyceryl methacrylate) (PGMA) was reacted with meso‐tetra(4‐hydroxylphenyl)porphyrin (THPP) in a homogeneous system via the ring opening reaction between epoxy and hydroxyl groups, which exist on the side chain of PGMA and the outside ring of THPP, respectively. Porphyrin‐functionalized PGMA with line‐type (denoted as HPP‐PGMA), on whose side chains hydroxylphenyl porphyrin (HPP) was bonded, was obtained. Grafting particles PGMA/SiO2 were also reacted with THPP, and the porphyrin‐immobilized particles (denoted as HPP‐PGMA/SiO2), on which HPP was supported, were produced. The above two target products were characterized using spectroscopy methods, such as infrared (IR), nuclear magnetic resonance (1H‐NMR), electronic absorption, and fluorescence emission. The effects of various factors on the bonding and immobilization reactions of HPP were studied in detail. The experimental results show that the soluble HPP‐PGMA has all the spectral characteristics of porphyrins and the absorption or emission intensity is increased with the increase in the bonding degree of HPP. In the preparation process of HPP‐PGMA, in order to avoid the occurrence of the crosslinking reaction and to obtain HPP‐PGMA with complete line‐type, the catalyst should be selected and the reaction time should be controlled. NaHCO3 is an appropriate catalyst. In the immobilization process of HPP on the grafting particle PGMA/SiO2, the greater the used amount of the catalyst triethylamine (TEA), the more rapid is the rate of ring opening reaction, resulting in higher immobilization amount of HPP. Besides, the immobilization amount of HPP is increased with the enhancement of the reaction temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号