首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 497 毫秒
1.
介绍了105/140 GHz双频兆瓦级回旋管的设计和最新实验进展。该回旋管的谐振腔、准光模式变换器、BN输出窗采用了双频共用的设计,电子枪采用了双频复用的双阳极磁控注入枪,收集极采用单级降压。在现有实验室电网功率容量有限的情况下,进行脉冲调试,得到的实验结果为:在重频1 Hz、ms连续短脉冲条件下,在105 GHz点和140 GHz点脉冲功率分别达到710 kW和1.057 MW,脉宽0.7 ms,对应总效率分别为34%和49%。在105 GHz点通过脉宽延展和老炼,进一步得到300 kW/2 s和400 kW/1 s的秒级脉宽实验结果,BN窗片的温度在两种状态下温度分别达到606℃和503℃,波束频率单一,没有杂模。实验基本上验证了该器件的物理设计。  相似文献   

2.
回旋管一般使用准光模式变换器实现高阶腔体模式到高斯波束的转换。结合标量衍射理论、KS迭代算法、几何光学、最小均方法等方法设计了工作频率为140 GHz(TE24,9)和105 GHz(TE18,7)的双频准光模式变换器。仿真结果显示所设计的准光模式变换器工作频率为140 GHz(TE24,9)时能量传输效率99.0%、高斯含量99.7%,工作频率为105 GHz(TE18,7)时能量传输效率97.3%、高斯含量98.0%。能够满足MW级双频回旋管的应用需求。  相似文献   

3.
夏蒙重  鄢扬  刘大刚  王平  黄培培  刘腊群  王辉辉 《物理学报》2013,62(19):191301-191301
为了打破传统单注回旋管只能产生较低功率的局限性, 本文基于自主研发的PIC粒子模拟软件CHIPIC 对110 GHz和220 GHz同轴腔双注回旋管进行全三维数值模拟研究. 在理论分析同轴双电子注电子枪设计模型和初始参数的基础上通过CHIPIC对其进行优化设计, 得到了具有横纵速度比为1.0, 最大速度零散约为5.4%的高性能电子束; 并将此优化后的双阳极双注电子枪取代传统回旋管数值模拟时采用的回旋 发射进行110 GHz和220 GHz双注回旋管整管的数值模拟, 并采用MPI四进程并行计算, 最终获得了具有双频分别为110 GHz和220 GHz、模式为TE02模、平均输出功率约在70 kW、 效率达到8.75%的高性能双注回旋振荡管. 关键词: 同轴腔双注回旋管 同轴双电子注电子枪 横纵速度比 速度零散  相似文献   

4.
研制出国内首支基于电子回旋加热应用的28 GHz/50 kW准光输出大功率连续波回旋管。该回旋管采用了双阳极磁控注入枪,TE02模式谐振腔,内置准光模式变换器,单级降压收集极。回旋管采用无液氦制冷超导磁体提供稳态磁场。实验中成功实现54.8 kW/1 s短脉冲输出和45.8 kW/30 s的连续波输出,工作频率为28.08 GHz,总效率达到57%。  相似文献   

5.
HL-2A装置3MW ECRH系统采用双高压电源形式的电子回旋管,阴极高压电源为回旋管提供加速束电流,阳极高压电源对通过转换区后的束电流施加减速作用,利于回旋管收集极吸收。根据回旋管运行特点和各回旋管不同的工作特性,合理优化回旋管阴极、阳极高压电源工作电压和其他参数。通过远程监控系统,使同时工作的回旋管处于较好的工作状态,充分提高 HL-2A 装置 ECRH 系统多管运行的微波输出功率。实验中,6支回旋管同时运行时,微波最高输出功率2.5MW,达到设计额定值83%,使HL-2A装置中等离子体得到了有效的加热。  相似文献   

6.
HL-2A装置3MW ECRH系统采用双高压电源形式的电子回旋管,阴极高压电源为回旋管提供加速束电流,阳极高压电源对通过转换区后的束电流施加减速作用,利于回旋管收集极吸收。根据回旋管运行特点和各回旋管不同的工作特性,合理优化回旋管阴极、阳极高压电源工作电压和其他参数。通过远程监控系统,使同时工作的回旋管处于较好的工作状态,充分提高HL-2A装置ECRH系统多管运行的微波输出功率。实验中,6支回旋管同时运行时,微波最高输出功率2.5MW,达到设计额定值83%,使HL-2A装置中等离子体得到了有效的加热。  相似文献   

7.
根据 HL-2M 装置物理实验加热的需求,完成了总功率为 8MW 的电子回旋共振加热及电流驱动 (ECRH/ECCD)系统设计,开展了波源、传输及天线等关键部件研制。8MW ECRH/ECCD 系统,由 8 套 105GHz/  1MW/3s 波源系统、8 条内径为 63.5mm 的真空传输线及三套极向实时可控的发射天线构成。目前,已完成 ECRH/ECCD 系统关键部件研制及其相关的桌面与高功率性能测试。测试结果表明,微波源回旋管输出微波功率 达到1MW/3s,在真空度为 10‒2Pa 的过模波纹圆波导传输线中能低耗稳定传输,发射天线极向全量程角度转动响 应时间在 50ms 以内。   相似文献   

8.
HL-2A装置电子回旋共振加热系统的主要指标是2MW/1s/68GHz,系统由4个单元组成,每个单元包括一只回旋管,微波传输系统,控制保护测量和冷却等子系统。通过对ECRH系统和回旋管的调试,每只管子微波输出功率500kW,脉冲宽度1s,四管并联运行时总输出功率达到1.63MW,系统使用效率高于80%。  相似文献   

9.
研制了一个用于4mm 回旋管的超导磁体,其主磁场达到3T.与回旋管配合产生基波长脉冲,输出功率大于60KW,脉冲宽度10—20ms,工作频率70GHz.用于 HL-1托卡马克成功地进行了等离子体预电离实验.  相似文献   

10.
国内首次成功进行W波段三次谐波回旋管实验。回旋管工作模式为TE61,磁场1.2 T,采用拍频法测定工作频率为94.86 GHz。电子束电压为45 kV时,电流1.6 ~ 4.4 A范围内都观测到了三次谐波振荡信号。采用焦热计测定最大输出功率4.9 kW,效率约 3%。  相似文献   

11.
The operational features of a 140-GHz, transverse electric TE22,6 mode gyrotron oscillator with an advanced quasi-optical mode converter, a Brewster window, and a single-stage depressed collector at 140 GHz with an output power of 2.1 MW and an efficiency of 34% without depressed collector and 53% with depressed collector are presented. The high output power level is possible due to an almost reflectionless termination of the radio frequency (RF) beam line outside the tube. The operation of the TE22,6 mode gyrotron is described in detail, and the significant features for achieving the high-output power are pointed out  相似文献   

12.
A broadband quasi-optical (QO) mode converter for a multi-frequency gyrotron has been designed and tested at Forschungszentrum Karlsruhe (FZK). The launcher is optimized for the TE22,8 mode at 140 GHz, but the radiated beams present an almost identically focused pattern for all 9 considered modes between 105 GHz (TE17,6) and 143 GHz (TE23,8). Combining with a beam-forming mirror system, which consists of a quasi-elliptical mirror and two phase-correcting mirrors with non-quadratic surface contour, further calculations show that efficiencies of more than 94% have been achieved for converting the rotating high-order cylindrical cavity modes into the usable fundamental Gaussian mode. Low power (cold) measurements show a good agreement with theoretical predictions. This QO mode converter can be used for the broadband operation of a multi-frequency 1 MW gyrotron.  相似文献   

13.
In order to demonstrate the usability of gyrotron oscillators as frequency step tunable high power millimeter-wave sources, experiments on a 1 MW, 140 GHz TE22,6 gyrotron with a built-in quasi-optical (q. o.) mode converter have been performed. By varying the operating parameters of the tube, a series of oscillations in the frequency range from 114 GHz to 166 GHz were excited. To avoid reflections, caused by the required vacuum barrier window, the gyrotron was equipped with a Brewster window. The achieved output power levels between 0.85 and 1.05 MW are compared to measurements carried out with the same tube using a conventional single-disk window. These experiments showed that even by using a q. o. mode converter, the influence of window reflections on the gyrotron oscillatory behavior cannot be removed completely.  相似文献   

14.
A further step in the development of a coaxial-cavity gyrotron operated in the transverse electric TE-31,17 mode at 165 GHz is presented. The gyrotron has been equipped with a quasi-optical output system consisting of a Vlasov launcher with a single cut and two mirrors, one with a quasi-elliptic and the other with a nonquadratic phase correcting surface. The radio frequency (RF) power is transmitted through a single output window. A maximum output power of 1.7 MW has been achieved. At the nominal operational parameters an RF power of 1.3 MW with an efficiency of 27.3% has been measured. The efficiency increases to 41% in operation with a single-stage depressed collector  相似文献   

15.
We report experimental results on a megawatt power level, 140-GHz coaxial gyrotron oscillator. The gyrotron has an inverted magnetron injection gun (IMIG) designed for operation at up to 95 kV and 88 A. The IMIG has an inner grounded anode which extends from the center of the gun down through the entire length of the tube including the cavity and collector. The IMIG was tested at up to 105 kV and 93 A in 3 μs pulses, achieving an electron beam power of 10 MW. The output power from the coaxial gyrotron cavity was transported to an internal mode converter and a single mirror that coupled the power out transversely from the tube axis. A maximum output power of up to 1 MW was obtained in the TE27,11 mode at 142 GHz at an efficiency of 16%, about one half of the design efficiency. The reduced efficiency was attributed to nonuniformity of the cathode emission and the sensitivity to the relative alignment of the electron gun, coaxial insert, and cavity. The cathode emission over the azimuthal angle was measured for two cathodes and was shown to be nonuniform due to both temperature and emitter work function nonuniformity. The gyrotron was also tested in two alternate configurations: 1) with the internal mode converter removed (axial output), and 2) with both the internal converter and the coaxial insert removed (empty cavity). In operation in the empty cavity configuration, which is equivalent to a conventional gyrotron oscillator, output power of up to 0.9 MW was observed  相似文献   

16.
The operation features of a TE10.4-mode gyrotron oscillator with a quasi-optical mode converter and a single-stage depressed collector at 140 GHz with an output power of 500 kW in long pulses of 0.2 s are presented. Measurements on long-pulse operation of the tube are described in detail, and the significant differences between short- and long-pulse operation concerning efficiency and output power are pointed out. The variation of frequency during a pulse and an irreversible frequency shift during long-pulse operation were measured and are discussed with respect to gyrotron design  相似文献   

17.
The development of a coaxial-cavity gyrotron operating in TE31,17 mode at 165 GHz is presented. The selection of the operating frequency and mode are based on the limitations imposed by the maximum held of the superconducting (sc) magnet at Forschungzentrum Karlsruhe, Institut fur Technische Physik (FZK), the use of the inverse-magnetron injection gun (IMIG) of the 140-GHz, TE28,16 coaxial gyrotron and the possibility of transforming the cavity mode to a whispering gallery mode (WGM) appropriate for the dual-beam quasioptical (q.o.) output coupler and the two output windows, which are foreseen for the next lateral output version of the tube. The tube with axial output has been tested at FZK to deliver maximum output power of 1.17 MW in the designed TE31,17 mode with 26.7% efficiency at 164.98 GHz. Maximum efficiency of 28.2% was achieved at 0.9-MW output power. The design operating point with output power 1.36 MW and 36.7% efficiency was net accessible because of beam instabilities at high electron-velocity ratio α, presumably caused due to high electron-velocity spread. Power at higher frequencies was also detected: 1.02 MW at 167.16 GHz in TE32,17 mode with 26.88 efficiency, 0.63 MW at 169.46 GHz in TE33,17 mode with 18% efficiency, and 0.35 MW at 171.80 GHz in TE31,17 mode with 13.3% efficiency  相似文献   

18.
Results are reported of a theoretical and experimental investigation of a quasi-optical mode converter for the transformation of whispering gallery mode gyrotron output into a linearly polarized Gaussian like beam. The mode converter consists of a helically cut waveguide launcher, similar to that originally proposed by Vlasovet al, followed by a focusing mirror. Theoretical results using aperture field methods indicate that the length of the waveguide launcher is of critical importance in providing a confined radiation pattern. Experimental results on the radiation pattern were obtained for several launcher lengths using a 0.6 MW, 149 GHz pulsed gyrotron operating in the TE16,2 mode. Radiation pattern results for the optimum launcher length agree well with theoretical calculations using the Stratton-Chu aperture radiation theory for unperturbed waveguide modes. A mirror focusing in the azimuthal direction was designed by a geometrical optics approach to focus the radiation coming from the launcher. Good focusing with 91.4% efficiency (power in the focused beam divided by gyrotron power) was found experimentally using the combined launcher and mirror with the pulsed gyrotron. These results indicate that quasi-optical antennas are useful for transforming high order, high frequency gyrotron modes into directed beams in free space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号