首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental investigation of a 140-GHz coaxial gyrotron oscillator
Authors:Advani  R Hogge  JP Kreischer  KE Pedrozzi  M Read  ME Sirigiri  JR Temkin  RJ
Institution:Plasma Sci. & Fusion Center, MIT, Cambridge, MA;
Abstract:We report experimental results on a megawatt power level, 140-GHz coaxial gyrotron oscillator. The gyrotron has an inverted magnetron injection gun (IMIG) designed for operation at up to 95 kV and 88 A. The IMIG has an inner grounded anode which extends from the center of the gun down through the entire length of the tube including the cavity and collector. The IMIG was tested at up to 105 kV and 93 A in 3 μs pulses, achieving an electron beam power of 10 MW. The output power from the coaxial gyrotron cavity was transported to an internal mode converter and a single mirror that coupled the power out transversely from the tube axis. A maximum output power of up to 1 MW was obtained in the TE27,11 mode at 142 GHz at an efficiency of 16%, about one half of the design efficiency. The reduced efficiency was attributed to nonuniformity of the cathode emission and the sensitivity to the relative alignment of the electron gun, coaxial insert, and cavity. The cathode emission over the azimuthal angle was measured for two cathodes and was shown to be nonuniform due to both temperature and emitter work function nonuniformity. The gyrotron was also tested in two alternate configurations: 1) with the internal mode converter removed (axial output), and 2) with both the internal converter and the coaxial insert removed (empty cavity). In operation in the empty cavity configuration, which is equivalent to a conventional gyrotron oscillator, output power of up to 0.9 MW was observed
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号