首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
干贝水分检测的建模及分级方法   总被引:1,自引:0,他引:1  
高光谱成像已被应用于建立干贝水分含量预测模型,其模型性能受样本划分方法及建模方法影响。样本划分方法决定着所选样本是否具有代表性,而建模方法决定着如何利用样本建立模型,但样本划分方法与建模方法的内在联系却鲜有研究报道。在方法优选上,将样本划分方法与建模方法进行组合,探究不同方法组合对干贝水分含量预测模型性能的影响,对干贝水分检测建模及分级方法的优选具有重要意义,同时也能为其他样本的光谱建模提供参考。采集380~1 030 nm波段下270个干贝样本的高光谱图像,提取干贝样本的光谱数据,通过RS,KS,SPXY和CG四种常用的方法划分样本,并以PLSR和LS-SVM两种常用的建模方法建立多个干贝水分含量预测模型,计算和比较各模型的性能指标。结果表明: PLSR模型使用RS法划分干贝水分含量样本最为适宜(其RPD为4.079 6),LS-SVM模型使用SPXY划分法最为适宜(其RPD为4.175 6),划分样本方法的优劣与建模方法有关,其优选需要结合特定的建模方法进行。在常用的四种样本划分方法和两种建模方法中,采用SPXY法划分干贝水分含量样本并结合LS-SVM法建模的效果和精度最好。  相似文献   

2.
为探寻一种快速可靠的分析方法用于橄榄油中掺杂煎炸老油含量的测定,实验采用可见和近红外透射光谱分析技术结合区间偏最小二乘法(interval partial least squares, iPLS)、联合区间偏最小二乘法(synergy interval partial least squares, SiPLS)和反向区间偏最小二乘法(backward interval partial least squares, BiPLS),对掺杂不同含量煎炸老油的橄榄油建模分析,并对不同模型比较优选。采集样品400~2500 nm范围内的光谱,对光谱数据进行Savitzky-Golay(SG)平滑去噪。剔除奇异样本后,采用sample set partitioning based on joint X-Y distance(SPXY)法划分样本集,以不同的iPLS优选建模区域,建立煎炸老油含量预测模型。结果表明:对掺杂不同含量煎炸大豆油的橄榄油,采用划分20个区间,选择2个子区间[4, 16]建立的SiPLS模型预测效果最好,相关系数(Rp)达0.998 9,预测均方根误差(RMSEP)为0.019 2。对掺杂不同含量煎炸花生油的橄榄油,采用划分20个区间,选择2个子区间[2, 16]组合建立的SiPLS和BiPLS模型具有相同的预测效果,预测均方根误差(RMSEP)为0.0120,均优于iPLS模型。此外,与SiPLS模型相比,BiPLS模型运算量少,速度快。由此可见,基于掺杂油样品的可见和近红外透射光谱,分别采用组合区间偏最小二乘法(SiPLS)和反向区间偏最小二乘法(BiPLS)优选建模光谱区域,可以对橄榄油中掺杂煎炸大豆油和煎炸花生油含量进行准确测定。而且,实验过程无需对掺杂油样品进行预处理,无环境污染,操作简单,快速无损。  相似文献   

3.
为了解决传统冷鲜牛肉品质检测技术的操作繁琐、有不可逆破坏等问题,提出采用高光谱与多参数融合的冷鲜肉品质检测方法。以冷鲜牛肉品质作为研究对象,提取冷鲜牛肉感兴趣区域(ROI)光谱并测量冷鲜牛肉的质构参数:硬度、弹性、粘聚性、胶着度、咀嚼度、回复性。经参数精度比较,筛选出粘聚性、回复性作为建模参数。分别采用Kennard-Stone和SPXY算法对原始光谱数据进行划分,通过样本划分后所建模型的相关系数和相对标准偏差确定最优样本划分方法,最终采用SPXY(sample set partitioning based on oint X-Y distance)算法对样本进行划分得到35个训练集和7个测试集。在经过SPXY算法样本划分的基础上,分别采用一阶微分(D1st)、多元散射校正(MSC)、标准正态变换(SNV)、二阶微分(D2st)对高光谱数据进行预处理,有效消除了光谱中的噪声,提高信噪比。使用连续投影法(SPA)提取光谱特征波长,有效减小了全波段建模包含的大量噪声信息的缺点,使模型精确度得到保障的同时提高了模型的运行速度。最后,分别采用偏最小二乘法(PLSR)和主成分回归法(PCR)构建冷鲜牛肉品质预测模型。以粘聚性为参数时,SNV-SPA-PLSR模型性能最优,模型预测相关系数为0.879 8;以回复性为参数时,D2st-SPA-PLSR模型精度最高,模型预测相关系数为0.880 6。实验结果表明,基于高光谱与多参数融合的冷鲜肉品质检测方法能够实现冷鲜牛肉品质快速检测。  相似文献   

4.
在水稻抗倒伏育种中,水稻茎秆纤维素含量作为重要的作物性状表现型数据,用传统方法获取时受人力成本和时间成本的约束,采集群体大小有限。利用高光谱技术能够实现对作物性状信息的快速、无损检测。为探究水稻茎秆纤维素含量近红外光谱反演模型,以田间小区试验的方式,采集水稻灌浆期至成熟期茎秆基部倒2、3节作为实验样本,并在实验室内使用NIRQuest512型号高光谱仪测得茎秆近红外反射光谱数据;采用标准变量正态变换(SNV)、连续小波变换(CWT)及两种方法结合(SNV-CWT)对原始近红外光谱进行预处理,经对比分析,原始光谱经SNV处理后再通过CWT对应6尺度分解最优,然后采用联合区间偏最小二乘法(SiPLS)、迭代保留信息变量法(IRIV)对最优预处理(SNV-CWT)的光谱特征曲线进行光谱特征变量筛选,分别提取了64个和16个特征变量;为优化模型并提高其模型精度,采用IRIV算法对SiPLS所选的特征变量进行二次筛选,得到6个特征变量,特征波长为1 200, 1 207, 1 325, 1 470, 1 482和1 492 nm,最后基于优选出的特征变量分别建立水稻茎秆纤维素含量的支持向量机回归(εSVR)和核极限学习机(KELM)预测模型,模型参数(惩罚系数C,核函数系数γ和不敏感参数ε)分别采用灰狼算法(GWO)、差分进化灰狼算法(DEGWO)和自适应差分进化灰狼算法(SaDEGWO)进行优化选择。结果表明,采用SNV-CWT方法光谱预处理后,经SiPLS-IRIV方法筛选的特征变量构建的SaDEGWO优化的SVR模型精度最高,模型参数,γ,ε分别为302.838 2,0.087 7,0.070 8,测试集的决定性系数(R2p)为0.880,均方根误差(RMSEP)为15.22 mg·g-1,剩余预测残差(RPD)为2.91,表明模型具有较好的预测能力,可为水稻茎秆纤维素含量预测提供参考。  相似文献   

5.
基于紫外光谱的水产养殖水质总氮含量快速检测研究   总被引:1,自引:0,他引:1  
应用紫外(Ultraviolet,UV)光谱技术对水产养殖水质总氮含量进行快速检测。为了消除各种系统误差与偶然误差对模型预测性能造成的影响,将88个水样的总氮浓度实测值数据和光谱吸光度数据作为原始数据,将模型建立分为样本集划分、数据预处理、特征波段提取、模型选择与LV数量选择5个阶段,以求达到最优预测效果,其中前4个阶段分别使用多种方法进行比较。结果证明每个阶段都是必不可少的,只有通过对比其优劣才能找到最适合总氮含量测定的建模过程及方法。首先用浓度梯度(CG)法对原始数据进行相同的样本集划分处理,然后在此基础上分别建立主成分回归(PCR)、逐步回归(SR)和偏最小二乘回归(PLSR)三种模型,选择预测效果最好的PLSR作为本文的预测模型。PLSR的建模效果会在很大程度上受到潜在变量(LVs)数量的影响,通常选取模型预测均方根误差RMSEP值最小时所对应的LV个数为最优LV个数。其次,选用CG法、随机抽样(RS)法、 Kennard Stone(KS)法和SPXY法4种样本集划分算法对样本进行处理,并对所建立的PLSR模型预测效果进行比较,最终选择SPXY算法作为最优样本划分算法。然后在对样本集进行SPXY法划分的基础上,运用多种预处理算法对光谱吸光度数据进行预处理,包括小波变换(WT)、一阶导数法(Der1st)与二阶导数法(Der2nd)三种单一算法和小波变换与两种导数法的组合预处理算法WT-Der1st和WT-Der2nd。然后在预处理的基础上分别使用连续投影变换(SPA)和逐步回归(SR)两种特征波段提取方法,对比可知, SPA特征提取方法比SR的提取效率高且建模效果好。SPA算法既可以大大地简化模型,又可以在一定程度上提升模型的预测精度。基于WT-Der1st-SPA提取的特征波段为218 nm,与总氮特征波段区间相一致,由此说明该方法比较科学。综合上述建立的10个PLSR模型,考虑到预测精度与模型复杂度2个因素,最终选择基于WT-Der1st-SPA建立的PLSR模型作为最优模型,该模型预测决定系数r~2为0.996,预测均方根误差RMSEP为0.042 mg·L~(-1)。由此可见,所建立的模型预测效果非常好,可以快速准确地测定水体的总氮含量,为实现光谱技术在水产养殖其他水质监测指标的在线检测以及快速测定提供了经验。  相似文献   

6.
使用便携式近红外(901~1 650 nm)和可见光(400~900 nm)光谱仪结合多变量分析方法无损检测水稻水分含量,选用100种不同品种的水稻并采集其光谱信息,其中粳稻52种,籼稻34种,糯稻14种。采用GB 5009.3—2016中的直接干燥法测定每种水稻样本的水分含量。利用蒙特卡洛偏最小二乘法(MCPLS)剔除水稻样本中的异常值,基于近红外和可见光光谱的数据集分别剔除8个和4个异常值。采用基于联合X-Y距离的样本划分法(SPXY)按照3:1的比例划分样品,近红外和可见光数据集分别得到69、 72个校正集和23、 24个预测集。采用正交信号校正(OSC)、多元散射校正法(MSC)、去趋势变换(De-trend)、标准正态变换(SNV)、基线校正(Baseline)、 Savitzky-Golay卷积导数(S-G导数)、标准化(Normalize)、移动平均平滑(moving average)、 Savitzky-Golay卷积平滑处理法(S-G平滑)共9种算法对原始光谱数据进行预处理,基于近红外和可见光光谱的OSC、 SNV和OSC、 Moving average预处理效果较好...  相似文献   

7.
土壤组分光谱估算过程中校正样本集的构建会影响模型的预测精度。当前结合反射光谱和Kennard-Stone (KS)算法的校正样本集构建策略忽视了土壤反射光谱是土壤属性的综合反映,构建的样本集通常无法很好地代表目标土壤组分的变异。光谱变换方法可以突出目标组分的光谱特征,为此,本文以湖北省江汉平原滨湖地区水稻土为研究对象,结合包括一阶微分(FD)、Savitzky-Golay(SG)、Haar小波变换、标准正态变量变换(SNV)和多元散射校正(MSC)在内的光谱变换方法和KS算法进行校正样本集建构,通过对比不同样本集构建策略对使用偏最小二乘回归(PLSR)建立的土壤全氮含量光谱估算模型预测精度的影响,研究光谱变换是否有助于提高基于KS算法构建的校正样本集的代表性。结果表明:不同光谱变换会影响校正样本集的构建。反射光谱经过SG或Haar小波变换后,再使用KS算法构建校正样本集与直接基于反射光谱使用KS算法构建的校正样本集相同,建立的估算模型精度不变,相对分析误差(RPD)分别为1.41和1.27。结合FD,SNV或MSC变换和KS算法构建的校正集与基于反射光谱使用KS算法构建的校正集不同,建立的估算模型RPD分别从0.95,1.48和1.42提高到1.13、1.78和2.20。研究表明SNV和MSC等光谱变换方法可以提高基于KS算法构建的校正样本集的代表性,并可有效提高模型预测精度。  相似文献   

8.
虫害胁迫下毛竹叶绿素含量高光谱估算方法   总被引:1,自引:0,他引:1  
叶绿素作为参与植被光合作用最重要的色素,是监测毛竹虫害的一项重要指标。通过对不同光谱数据集进行波长筛选,建立虫害胁迫下竹叶叶绿素含量的高光谱估算模型,为利用高光谱遥感监测毛竹虫害提供理论依据。试验在福建省毛竹生产基地顺昌县进行,使用ASD FieldSpec 3光谱仪采集不同虫害程度竹叶光谱102条,并利用SPAD-502叶绿素计测定相应叶片叶绿素含量。通过对比不同虫害程度竹叶的光谱特征,探测利用高光谱数据估算叶绿素含量的机理。对竹叶原始光谱(OS)进行包络线去除(CR)、一阶导数(FD)、包络线去除一阶导数(CR-FD)变换,分析不同光谱数据与叶绿素含量的相关性,并利用连续投影算法(SPA)分别提取4种光谱的特征波长。采用基于x-y距离结合的样本划分法(SPXY)和随机法对4种光谱数据集进行划分,结合多元逐步回归(MSR)建立竹叶叶绿素含量估算模型,分析光谱变换及样本划分对估算叶绿素含量的影响。结果表明,不同虫害程度竹叶光谱反射率差异明显,主要表现为可见光波段范围内的"绿峰"和"红谷"的逐渐消失,"红边"斜率减小,近红外波长反射率降低。通过光谱变换可有效提升光谱与叶绿素含量的相关性,其中CR-FD光谱与叶绿素含量在724 nm处的相关系数最大。经连续投影算法提取的不同光谱数据集的特征波长集中分布在绿光、红光、"红边"位置,多个被选择波长位于与叶绿素含量相关性较高的波长区(600~750 nm)。基于SPXY样本划分法建立的MSR模型相比于随机样本划分法能显著提升叶绿素含量的估算精度,其中R~2和RPD平均提高0.1和0.5, RMSE平均降低0.7。以CR-FD光谱特征波长结合SPXY样本划分法建立的多元逐步回归模型对竹叶叶绿素含量的估算精度最高,R~2, RMSE和RPD分别为0.835, 2.604和2.364,可对虫害胁迫下毛竹叶片叶绿素含量进行准确的估算。  相似文献   

9.
样本选择是模型转移的重要组成部分,其目的是在主光谱和从光谱中选择合适的样本,建立二者的转移模型,使得从光谱的预测样本能通过转移模型校正成类似于主光谱的样本,进而用主光谱的模型直接预测其浓度。目前,常用的样本选择算法有:Kennard-Stone法(KS法), SPXY法和SPXYE法。根据上述算法的特点,提出了一种新的样本选择方法:加权SPXYE法(WSPXYE法),进而将其用于选择合适的转移集样本。WSPXYE同样先计算样本间的距离,其距离有三个部分组成:光谱(X)之间的归一化距离d_(xs),浓度(y)之间的归一化距离d_(ys),以及校正误差(e)之间的归一化距离d_(es)。其加权代数和d_(wspxye)=αd_(xs)+βd_(ys)+(1-α-β)d_(es)即为WSPXYE距离。计算了WSPXYE距离之后,可以根据其距离选择距离较大的样本作为转移集样本。WSPXYE是Kennard-Stone法(KS法), SPXY法和SPXYE法的推广,而KS法(α=1,β=0)、 SPXY法(α=0.5,β=0.5)以及SPXYE法(α=0.333,β=0.333)则是WSPXYE法的特例。直接校正法(DS)、有信息成分提取-典型相关分析法(CCA-ICE)作为模型转移算法验证了WSPXYE方法的效果。结果显示,与KS法、 SPXY法以及SPXYE法相比, WSPXYE法可以通过调节参数,选择合适的样本,获得较低的误差。  相似文献   

10.
样本选择是模型转移的重要组成部分,其目的是在主光谱和从光谱中选择合适的样本,建立二者的转移模型,使得从光谱的预测样本能通过转移模型校正成类似于主光谱的样本,进而用主光谱的模型直接预测其浓度。目前,常用的样本选择算法有:Kennard-Stone 法 (KS法), SPXY法和SPXYE法。根据上述算法的特点,提出了一种新的样本选择方法:加权SPXYE法(WSPXYE法),进而将其用于选择合适的转移集样本。WSPXYE同样先计算样本间的距离,其距离有三个部分组成:光谱(X)之间的归一化距离dxs,浓度(y)之间的归一化距离dys,以及校正误差(e)之间的归一化距离des。其加权代数和dwspxye=αdxs+βdys+(1-α-β)des即为WSPXYE距离。计算了WSPXYE距离之后,可以根据其距离选择距离较大的样本作为转移集样本。WSPXYE是Kennard-Stone法(KS法), SPXY法和SPXYE法的推广,而KS法(α=1=0)、SPXY法(α=0.5,β=0.5)以及SPXYE法(α=0.333,β=0.333)则是WSPXYE法的特例。直接校正法(DS)、有信息成分提取-典型相关分析法(CCA-ICE)作为模型转移算法验证了WSPXYE方法的效果。结果显示,与KS法、SPXY法以及SPXYE法相比,WSPXYE法可以通过调节参数,选择合适的样本,获得较低的误差。  相似文献   

11.
利用近红外光谱技术结合组合区间偏最小二乘(SiPLS)、竞争性自适应重加权(CARS)、连续投影算法(SPA)、无信息变量消除(UVE)特征提取方法,运用深度信念网络(DBN)建立蓝莓糖度的通用检测模型,实现蓝莓糖度在线无损快速检测。采集了“蓝丰”和“瑞卡”共280个蓝莓样本的近红外光谱,采用手持折光仪测定其糖度;首先利用联合X-Y的异常样本识别方法(ODXY)检测到蓝丰和瑞卡蓝莓分别有2个和4个样本呈现异常,剔除该6个异常样本,对其余274个样本利用光谱-理化值共生距离算法(SPXY)以3∶1的比例划分出训练集和测试集;其次,对比分析卷积平滑(S-G平滑)、中心化、多元散射校正等预处理对蓝莓原始光谱的改善效果,运用SiPLS对光谱降维,筛选特征波段,利用CARS,UVE和SPA方法对特征波段进行二次筛选,以最优的特征波长建立DBN和偏最小二乘回归(PLSR)模型。结果表明,蓝莓糖度近红外检测模型的最优预处理方法为S-G平滑,SiPLS方法挑选的蓝莓糖度最优波段为593~765和1 458~1 630 nm,UVE算法从SiPLS筛选的346个变量中优选出159个最佳波长。建立蓝莓糖度DBN模型时,分析了不同隐含层数对检测模型的影响,并以交互验证均方根误差(RMSECV)作为适应度函数,利用粒子群算法(PSO)对各隐含层神经元个数在[1,100]之间寻优,发现隐含层为3层且隐含层节点数为67-43-25时,DBN模型的RMSECV达到最小,为0.397 7。无论是以全光谱还是特征波长建模,蓝莓糖度近红外DBN模型均优于常规PLSR方法;尤其以UVE方法二次筛选的特征波长建立的模型大大减少了建模变量,且模型精度更高,蓝莓糖度最优的PLSR模型测试集相关系数(RP)为0.887 5,均方根误差(RMSEP)为0.395 9,最优DBN模型RP为0.954 2,RMSEP为0.310 5。研究表明,利用SiPLS-UVE进行特征提取,结合深度信念网络方法建立的蓝莓糖度检测模型可以更好地完成蓝莓糖度在线精准分析,该方法有望应用于蓝莓及其他果蔬内部品质检测。  相似文献   

12.
在利用可见-近红外漫透射光谱技术对苹果的可溶性固形物(SSC)检测时,由于卤素灯光照射在苹果上的位置不同,采集到的苹果光谱中所包含的可溶性固形物信息不同,导致模型得出的结果不同;找到一个最好的苹果光照位置有利于得到最佳的可溶性固形物评价模型。利用多模式可调节的光学结构在相同的实验环境和实验条件下采集了购买于同一水果批发商的尺寸相近但照射位置不同的两批苹果的近红外漫透射光谱,探索苹果可溶性固形物模型建立过程中最佳的照射位置从而得到最佳位置的可溶性固形物评价模型。通过对样品进行光谱采集、糖度真值采集并结合化学计量学方法得出最佳的建模位置,照射位置为上部且光谱没有预处理时的偏最小二乘回归(PLS)模型性能为RMSEC为0.288 2,RMSEP为0.343 6,Rc为0.960 6,Rp为0.934 9;照射位置为斜上部且光谱没有预处理的PLS模型性能为RMSEC为0.340 7,RMSEP为0.513 3,Rc为0.931 1,Rp为0.863 6;照射位置为上部且光谱没有预处理的主成分分析回归(PCR)模型性能为RMSEC为0.573 6,RMSEP为0.601 4,Rc为0.842 4,Rp为0.800 7;照射位置为斜上部且光谱没有预处理的PCR模型性能为RMSEC为0.709 2,RMSEP为0.797 4,Rc为0.701 4,Rp为0.670 7,最佳照射位置为苹果上部;进一步地采用多种预处理方法对照射位置为上部的PLS模型进行对比,得到最优模型为MSC-PLS模型,其RMSEC为0.2264 4,RMSEP为0.301 5,Rc为0.966 9,Rp为0.949 9。最后再对相同的46个苹果进行相同的实验操作得到光谱、真值后,代入到建立的MSC-PLS模型中进行外部验证,结果显示外部验证的相关系数为0.930 58,验证均方根误差为0.843 59,验证了建立的MSC-PLS模型的稳定性和可靠性,进一步表明光谱采集位置为苹果上部时的近红外漫透射模型有很好的预测能力,该研究为预测苹果可溶性固形物的检测提供了技术支持。  相似文献   

13.
可溶性固形物(SSC)和可滴定总酸(TA)含量是影响李果实品质的重要指标,经典的破坏性检测方法不适用于果实按品质分级,近红外光谱(NIRS)检测方法具有速度快、操作简便、可无损检测果实品质。为实现NIRS无损快速检测安哥诺李果实可溶性固形物和可滴定总酸含量,利用NIRS采集李果实的漫反射光谱,同时采用糖度计测定安哥诺李果实的SSC,采用滴定法测定了李果实TA含量,使用杠杆值和F概率值剔除异常样品,采用软件优化结合人工筛选光谱波段,使用了消除常数偏移量、减去一条直线、矢量归一化(SNV)、最大-最小归一化、多元散射校正(MSC)、一阶和二阶导数结合平滑处理、一阶导数结合减去一条直线和平滑处理、以及一阶导数结合SNV或MSC校正等光谱预处理方法,分别采用偏最小二乘法(PLS)和主成分分析结合反向传播人工神经网络(BP-ANN)建立李果实SSC、TA的定量分析模型。结果表明,李果实SSC和TA的最佳PLS建模效果波段范围分别为4 000~8 852和4 605~6 523 cm-1。SSC的PLS模型的最佳光谱预处理方法为MSC校正,最佳模型校正相关系数(Rc)为0.914 4,预测相关系数(Rp)为0.878 5,校正均方根误差(RMSEC)为0.91,预测均方根误差(RMSEP)为1.00。经一阶微分结合SNV和9点平滑的方法预处理后,TA的PLS模型效果最佳,Rc,Rp,RMSEC,RMSEP分别为0.860 3,0.819 6,0.80和0.86。提取了李果实SSC和TA光谱数据的主成分,并基于前10个主成分得分建立了李果实SSC和TA最佳BP-ANN定量分析模型,其Rc,Rp,RMSEC和RMSEP分别为0.976 7,0.889 7,0.75和0.99;TA的BP-ANN模型的相应参数值依次为0.974 3,0.897 7,0.62和0.83,与采用PLS算法建立的定量模型相比较,BP-ANN模型具有较高的Rc,Rp和较低的RMSEC,RMSEP,因此BP-ANN模型对SSC和TA指标的定量分析结果更佳。  相似文献   

14.
SiPLS-CARS与GA-ELM对哈密瓜冠层叶片含水率的反演估测   总被引:1,自引:0,他引:1  
传统的叶片含水率检测方法效率低、操作繁琐且是有损的检测,不利于大田哈密瓜叶片含水率的快速获取。为实现对大田哈密瓜生长期进行更精细的田间灌水管理,利用光谱技术分别获取了哈密瓜植株在成长期(M1)、开花期(M2)、结果期(M3)、成熟期(M4)四个时期内的冠层叶片样本,采用烘干法测得叶片样本的含水率。为提高预测模型的精度和稳定性,首先开展并讨论极限学习机(ELM)模型中的核函数与隐含层神经元个数的选择对ELM模型精度的影响。随后分别利用联合子区间偏最小二乘法(SiPLS)及其与竞争性自适应重加权采样法(CARS)、遗传算法(GA)、连续投影算法(SPA)的组合算法对全波段光谱数据中与叶片含水率相关性高的特征波长进行筛选提取。再分别使用GA与粒子群算法(PSO )对已经确定最佳核函数与隐含层神经元个数的ELM模型中的输入层与隐含层间的连接权值(W)和隐含层神经元阈值(B)进行优化选择,获取最优且稳定的W与B值,进一步提高模型的稳定性和预测精度。最后将四种特征波长提取算法优选出的特征波长分别进行ELM,GA-ELM,PSO-ELM建模分析,以校正集和预测集的相关系数RcRp为模型评价指标,经过对比分析优选出能准确预测哈密瓜冠层叶片含水率的反演估测模型。采用SiPLS及其与CARS,GA和SPA的组合算法提取特征波长,筛选出的变量数分别为273,20,32和6,占全光谱变量的15.6%,1.2%,1.9%和0.03%。进一步将筛选出的特征波长作为自变量,叶片的含水率作为因变量,建立了ELM的预测模型,最佳预测精度Rp值为0.845 0,预测精度不是很理想。故引入GA与PSO对ELM中随机产生的W与B值进行优化选择。最终,经过研究发现,利用GA优化后的ELM模型结合SiPLS-CARS筛选出的特征波长建立的哈密瓜冠层叶片含水率预测精度最优,故反演叶片含水率的最优建模方式为SiPLS-CARS-GA-ELM,Rc值为0.928 9,Rp值为0.903 2,所建模型精度较高,可为大田哈密瓜冠层叶片的含水率进行快速检测,为田间灌溉管理提供科学依据。  相似文献   

15.
蛋白粉是健身者必备的营养补剂,市场需求在不断增加,一些不法商家为了谋取利益,在蛋白粉中加入廉价的粉末售卖。传统的蛋白粉掺杂的检测方法费时、费力,操作复杂,且成本昂贵。高光谱技术具有易于操作、在不损害实验样本的情况下可快速检测等优点,因此,提出使用高光谱技术以实现蛋白粉掺假检测。在蛋白粉中分别加入质量百分数5%~60%,浓度间隔5%的三类掺假物(玉米粉、大米粉和小麦粉),并采集所有样本的光谱信息。在对蛋白粉中的玉米粉、大米粉和小麦粉三类掺假物进行定性判别时,首先分别采用卷积平滑(SG)、标准化(Normalize)、多元散射校正法(MSC)、基线校正(Baseline)和标准正态变换(SNV)的预处理方法对光谱数据进行处理,然后建立基于主成分回归(PCR)、反向传播神经网络(BPNN)和随机森林(RF)的模型,其中基于全波段光谱MSC预处理方法下建立的RF模型最优,其整体准确率达到了100%,其对应的RP和RMSEP分别为0.997 9和0.018 9。在对蛋白粉中不同掺假物浓度进行定量分析时,对三类掺假样本的光谱分别进行SG,Normalize,MSC,Baseline和SNV的预处理,并建立LSSVM模型;比较不同预处理方法下的各模型之间的性能,在蛋白粉中掺玉米粉、大米粉和小麦粉的LSSVM预测模型最佳预处理方法分别是无、Baseline和Normalize,然后,采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对其筛选,并建立LSSVM模型,三类掺假样本的SPA-LSSVM模型对应的RP为0.989 0,0.986 0和0.997 9,CARS-LSSVM模型对应的RP为0.991 0,0.994 6和0.999 1,故三类掺假样本的CARS-LSSVM模型预测效果更佳。研究表明:高光谱技术可以实现对蛋白粉掺假的定性、定量的检测,并且操作简单、检测快速和无损。  相似文献   

16.
利用高光谱成像技术与二维相关光谱(2D-COS)结合化学计量学检测灵武长枣半纤维素含量。采用定量瘀伤装置获得0,Ⅰ,Ⅱ,Ⅲ,Ⅳ级瘀伤长枣模型,通过高光谱和分光光度计分别获得样品高光谱图像和半纤维素含量。蒙特卡洛异常值检测法剔除异常样本后,分别用随机划分法(RS),Kennard-Stone法(KS)、光谱-理化值共生距离法(SPXY)和3∶1比例法对样本集划分校正预测。采用基线校准(Baseline)、去趋势(De-trending)和标准化(Normalize)对长枣原始光谱预处理后建立偏最小二乘回归模型(PLSR),优选最佳样本集划分及预处理方法。利用2D-COS将光谱信号扩展到第2维,在全光谱范围内寻找与半纤维素含量相关的敏感波段区间。采用竞争性自适应加权算法(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩方法(iVISSA)、变量组合集群分析法(VCPA)以及iVISSA+BOSS,iVISSA+CARS和iVISSA+VCPA方法在2D-COS敏感波段区间进行特征波长提取,并建立基于特征波长的PLSR模型。结果表明,样本集经3∶1划分和Baseline预处理后建立的基于全波段的PLSR模型最优,故最佳样本集划分方法为3∶1,预处理方法为Baseline,用于后续特征波长提取。通过2D-COS分析发现3个与半纤维素相关的自相关峰(401,641和752 nm);在2D-COS敏感区域(401~752 nm范围内),采用BOSS,CARS,iVISSA,VCPA,iVISS+BOSS,iVISS+CARS,iVISS+VCPA分别提取了14,26,39,12,15,22和11个对应的特征波长,占总波长的18.9%,35.1%,52.7%,16.2%,20.2%,29.7%和14.8%。对比2D-COS和特征波建立的PLSR模型,2D-COS+iVISSA-PLSR模型效果较好,其R2C=0.747 9,R2P=0.604 7,RMSEC=0.043 8,RMSEP=0.060 3。研究表明,利用高光谱成像技术结合2D-COS可实现灵武长枣半纤维素含量的快速检测。  相似文献   

17.
采用二维相关光谱(2D-COS)技术,以氘代氯仿为溶剂,解析了丹参酮ⅡA和隐丹参酮标准品的近红外光谱(NIR)。丹参酮ⅡA和隐丹参酮二维相关切片谱在1 600~1 800,1 900~2 230和2 300~2 400 nm处有特征吸收,其中丹参酮ⅡA在1 640和2 140 nm处有不同于隐丹参酮的呋喃环双键一级倍频和组合频吸收,1 696 nm为丹参酮ⅡA和隐丹参酮分子中甲基伸缩振动二级倍频,1 726和1 740 nm处吸收为丹参酮ⅡA和隐丹参酮环己烯亚甲基伸缩振动二级倍频,2 146和2 220 nm为丹参酮ⅡA和隐丹参酮苯环C—C伸缩振动与C—H伸缩振动的组合频,2 300~2 400 nm处一系列峰为丹参酮ⅡA和隐丹参酮甲基伸缩振动与弯曲振动组合频吸收。以丹参酮提取物为载体,以丹参酮ⅡA和隐丹参酮光谱解析特征波段及组合间隔偏最小二乘(SiPLS)筛选特征波段分别建立偏最小二乘(PLS)定量模型,模型的决定系数R2均大于0.9,校正均方根误差(root mean of square error of calibration, RMSEC)和交叉验证均方根误差(RMSECV),预测均方根误差(RMSEP)均较小。结果表明,2D-COS技术解析特征波段与SiPLS波段筛选所建PLS模型均稳定。2D-COS技术使近红外定量模型更具解释性,可解析出结构差异特征吸收,同一波段可实现结构类似物的同时定量测定。  相似文献   

18.
为了实现兰州百合关键营养物质蛋白质和多糖的快速无损检测,在12 000~4 000 cm-1光谱范围内采集了59份兰州百合粉的近红外光谱(NIRS)。首先运用SG、Normalize、SNV、MSC、Detrend、OSC、SG+1D、SG+Normalize、SG+SNV和SG+Detrend十种预处理方法对原始光谱数据进行处理,确定蛋白质的最佳预处理方法为SG+Detrend、多糖的最佳预处理方法为Detrend;然后运用CARS、SPA和PCA三种算法对预处理的光谱数据进行特征波长筛选,确定蛋白质和多糖的最佳特征波长提取方法均为SPA算法;最后采用PLSR法建立了兰州百合关键营养物质蛋白质和多糖含量的预测模型,结果显示,经过SG+Detrend_SPA处理所建立的蛋白质PLSR模型中,预测集相关系数Rp为0.810 6,预测集均方根误差RMSEP为1.195 3;经过Detrend_SPA处理所建立的多糖PLSR模型中,预测集相关系数Rp为0.810 9,预测集均方根误差RMSEP为2.0946。考虑到经典PLSR无损预测模型精度的限制,在该研究中提出SOM-RBF神经网络无损预测模型。首先利用SOM网络对数据样本进行聚类,然后将得到的聚类类别数和聚类中心作为RBF网络的隐层节点个数和隐层节点数据中心,以此来优化RBF的结构参数。在建立的蛋白质SOM-RBF神经网络模型中,预测集相关系数Rp为0.866 6,预测集均方根误差RMSEP为1.038 5;建立的多糖SOM-RBF神经网络模型中,预测集相关系数Rp为0.868 1,预测集均方根误差RMSEP为1.799 4。比较PLSR和SOM-RBF两种模型对两种物质的预测结果,确定了SOM-RBF神经网络模型为最优建模方法,最终确定在蛋白质检测中,最优模型为基于SG+Detrend_SPA_SOM-RBF建立的模型,模型的预测集相关系数较PLSR高5.6%,预测集均方根误差较PLSR低0.156 8;在多糖检测中,确定的最优模型为基于Detrend_SPA_SOM-RBF建立的模型,模型的预测集相关系数较PLSR高5.72%,预测集均方根误差较PLSR低0.295 2。研究结果表明,运用NIR和SOM-RBF技术可以实现对兰州百合关键营养物质蛋白质和多糖的快速无损检测,为今后快速无损检测兰州百合营养物质提供理论依据。  相似文献   

19.
激光诱导击穿光谱技术(LIBS)用于检测时,由于谱线多且复杂,存在许多冗余的信息,这些都会对定量分析造成影响。因此,提取有效的特征变量在LIBS的定量分析中具有非常重要的意义。对CaCl2溶液中的Ca元素进行光谱特征选择方法分析,对比单变量模型、偏最小二乘回归和CART回归树定标模型的准确度和稳定性。针对水体表面的波动性较大,光谱稳定性差,同时光谱受基体效应和自吸收效应影响等问题,首先采用单变量模型得到的拟合系数(R2)仅有0.933 2,训练均方根误差(RMSEC)、预测均方根误差(RMSEP)和平均相对误差(ARE)分别为0.019 2 Wt%,0.017 7 Wt%和11.604%。经偏最小二乘回归优化后,模型R2提高到0.975 3,RMSEC,RMSEP和ARE分别降低到0.010 8 Wt%,0.013 Wt%和7.49%。为了进一步提高定量分析的准确度,建立CART回归树定标模型。该方法在构建树模型时,通过平方误差最小化准则,从复杂的光谱信息中选取最优的特征变量组合做分类决策,从而建立Ca元素的定标曲线。通过CART回归树的变量选择,特征变量个数从100个减少到6个,变量的压缩率达到了94%,显著降低了无关谱线的干扰,回归树模型的相关系数R2,RMSEC,RMSEP和ARE分别为0.997 5,0.003 5 Wt%,0.006 1 Wt%和2.500%。相较于传统的单变量模型与偏最小二乘回归,CART回归树模型具有更高的精度、更小的误差。通过对特征变量的有效筛选,剔除无关信号的干扰,显著降低了基体效应和自吸收效应对LIBS定量分析的影响,提高了定量分析的准确度和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号