首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
物理学   3篇
  2022年   2篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
SiPLS-CARS与GA-ELM对哈密瓜冠层叶片含水率的反演估测   总被引:1,自引:0,他引:1  
传统的叶片含水率检测方法效率低、操作繁琐且是有损的检测,不利于大田哈密瓜叶片含水率的快速获取。为实现对大田哈密瓜生长期进行更精细的田间灌水管理,利用光谱技术分别获取了哈密瓜植株在成长期(M1)、开花期(M2)、结果期(M3)、成熟期(M4)四个时期内的冠层叶片样本,采用烘干法测得叶片样本的含水率。为提高预测模型的精度和稳定性,首先开展并讨论极限学习机(ELM)模型中的核函数与隐含层神经元个数的选择对ELM模型精度的影响。随后分别利用联合子区间偏最小二乘法(SiPLS)及其与竞争性自适应重加权采样法(CARS)、遗传算法(GA)、连续投影算法(SPA)的组合算法对全波段光谱数据中与叶片含水率相关性高的特征波长进行筛选提取。再分别使用GA与粒子群算法(PSO )对已经确定最佳核函数与隐含层神经元个数的ELM模型中的输入层与隐含层间的连接权值(W)和隐含层神经元阈值(B)进行优化选择,获取最优且稳定的W与B值,进一步提高模型的稳定性和预测精度。最后将四种特征波长提取算法优选出的特征波长分别进行ELM,GA-ELM,PSO-ELM建模分析,以校正集和预测集的相关系数RcRp为模型评价指标,经过对比分析优选出能准确预测哈密瓜冠层叶片含水率的反演估测模型。采用SiPLS及其与CARS,GA和SPA的组合算法提取特征波长,筛选出的变量数分别为273,20,32和6,占全光谱变量的15.6%,1.2%,1.9%和0.03%。进一步将筛选出的特征波长作为自变量,叶片的含水率作为因变量,建立了ELM的预测模型,最佳预测精度Rp值为0.845 0,预测精度不是很理想。故引入GA与PSO对ELM中随机产生的W与B值进行优化选择。最终,经过研究发现,利用GA优化后的ELM模型结合SiPLS-CARS筛选出的特征波长建立的哈密瓜冠层叶片含水率预测精度最优,故反演叶片含水率的最优建模方式为SiPLS-CARS-GA-ELM,Rc值为0.928 9,Rp值为0.903 2,所建模型精度较高,可为大田哈密瓜冠层叶片的含水率进行快速检测,为田间灌溉管理提供科学依据。  相似文献   
2.
苹果产地溯源具有重要的应用价值和现实意义。为了探寻苹果产地溯源新方法,以红富士品种为研究对象,以新疆阿克苏、山东烟台、陕西洛川三个产地671个红富士苹果样本为试材,分别采集其590~1 250 nm的近红外透射光谱,然后基于分数阶微分(FD)及主成分分析(PCA)-谱回归判别分析(SRDA)进行多模型融合,构建红富士苹果产地溯源的集成学习模型。首先,将经过光谱校正后的光谱数据划分为训练集和测试集,并利用分数阶微分预处理训练集光谱,获取不同阶次(取0~2阶,步长为0.1)的分数阶微分光谱;结合不同阶次的分数阶微分光谱及PCA-SRDA算法构建基学习器,将基学习器预测结果构成一个新训练集,并通过决策树算法完成模型融合,得到最终分类预测模型;随后,采用对应阶次的分数阶微分预处理测试集光谱,并基于已建立的基学习器,获得测试集相应的预测结果;最后,将预测结果构成一个新测试集,并基于已建立的分类预测模型,输出最终的预测结果。按7∶3比例随机划分样本集,并进行200次重复实验。结果表明,结合不同阶次的分数阶微分预处理及线性判别分析(LDA)、SRDA、PCA-LDA、PCA-SRDA算法建立多模型融合集成学习模型,具有较好的鉴别效果和较强的鲁棒性,其中,FD-PCA-SRDA多模型融合集成学习模型为最优,其训练集的平均精度为97.33%,标准差为0.49%,测试集的平均精度为94.84%,标准差为1.48%。故,分数阶微分技术及PCA-SRDA算法结合近红外透射光谱可成功、有效地实现苹果产地溯源。  相似文献   
3.
采用光纤漫反射光谱采集模式,采集未经预处理皮棉的近红外光谱,对比不同的光谱预处理方式,应用偏最小二乘回归建立皮棉杂质含量预测模型,判别分析法分类皮棉和杂质含量级别。采用一阶微分光谱预处理,使用3个主成分建立的杂质含量PLS模型预测相关系数r为0.906,RMSEC为0.440,RMSEP为0.823; 采用判别分析,分类含有植物性杂质皮棉和纯皮棉,使用15个主成分准确度达到95.4%; 判别含有多类杂质皮棉,分类准确率仅能达到80.9%。而杂质含量级别分类效果不佳。研究表明,皮棉近红外光谱可以预测皮棉中杂质含量等指标,但受到杂质含量、类型和均匀度的影响,后续研究应通过透射采集模式等方法,改善光谱质量,提高预测精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号