首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence resonance energy transfer (FRET) that consists of quantum dot as donors and organic fluorophore dyes as acceptors has been a very important method to detect biomolecules such as nucleic acids. In this work, we established a new FRET detection system of Bifidobacterium species-specific 16S rDNA using QD—ROX FRET bioprobe, in which 525 nm QD-DNA conjugation consisted of the carboxyl-modified QD and the amino-modified DNA in the presence of EDC. Both ROX-DNA and the conjugation above could hybridize with the target DNA after forming the QD—ROX bioprobe. When the hybridization made the distance between the QD and ROX to meet FRET effect needed, 525 nm QD fluorescence intensity decreased and ROX fluorescence intensity increased. In the control, there was no notable change of fluorescence intensities without target DNA. It is very clear that the change of the QD and ROX fluorescence intensities provide the good base and guaranty for this rapid and simple detection system.  相似文献   

2.
We report here a simple quantum dot-FRET (QD-FRET) bioprobe based on fluorescence resonance energy transfer (FRET) for the sensitive and specific detection of hepatitis B virus DNA (HBV DNA). The proposed one-pot HBV DNA detection method is very simple, rapid and convenient due to the elimination of the washing and separation steps. In this study, the water-soluble CdSe/ZnS QDs were prepared by replacing the trioctylphosphine oxide on the surface of QDs with mercaptoacetic acid (MAA). Subsequently, DNA was attached to QDs surface to form the functional QD-DNA bioconjugates by simple surface ligand exchange. After adding 6-carboxy-X-rhodamine (ROX)-modified HBV DNA (ROX-DNA) into the QD-DNA bioconjugates solution, DNA hybridization between QD-DNA bioconjugates and ROX-DNA was formed. The resulting hybridization brought the ROX fluorophore, the acceptor, and the QDs, the donor, into proximity, leading to energy transfer from QDs to ROX. When ROX-DNA was displaced by the unlabeled HBV DNA, the efficiency of FRET was dramatically decreased. Based on the changes of both fluorescence intensities of QDs and ROX, HBV DNA could be detected with high sensitivity and specificity. Under the optimized conditions, the linear range of HBV DNA determination was 2.5 – 30 nmol L?1, with a correlation coefficient (R) of 0.9929 and a limit of detection (3σ black) of 1.5 nmol L?1. The relative standard deviation (R.S.D.) for 12 nmol L?1 HBV DNA was 0.9 % (n?=?5). There was no interference to non-complementary DNA. Time-resolved fluorescence spectra and fluorescence images were performed to verify the validity of this method and the results were satisfying.  相似文献   

3.
The value of intrinsic chlorophyll fluorescence polarization, and the intensity in emission spectrum were investigated in leaf segments of Alocasia macrorrhiza under several stress conditions including different temperatures (25–50°C), various concentrations of NaCl (0–250 mM), methyl viologen (MV, 0–25 μM), SDS (0–1.0%) and NaHSO3 (0–80 μM). Fluorescence emission spectrum of leaves at wavelength regions of 500–800 nm was monitored by excitation at 436 nm. The value of fluorescence polarization (P value), as result of energy transfer and mutual orientation between chlorophyll molecules, was determined by excitation at 436 nm and emission at 685 nm. The results showed that elevated temperature and concentrations of salt (NaCl), photooxidant (MV), surfactant (SDS) and simulated SO2 (NaHSO3) treatments all induced a reduction of fluorescence polarization to various degrees. However, alteration of the fluorescence spectrum and emission intensity of F685 and F731 depended on the individual treatment. Increase in temperature and concentration of NaHSO3 enhanced fluorescence intensity mainly at F685, while an increase in MV concentration led to a decrease at both F685 and F731. On the contrary, NaCl and SDS did not cause remarkable change in fluorescence spectrum. Among different treatments, the negative correlation between polarization and fluorescence intensity was found with NaHSO3 treatments only. We concluded that P value being measured with intrinsic chlorophyll fluorescence as probe in leaves is a susceptible indicator responding to changes in environmental conditions. The alteration of P value and fluorescence intensity might not always be shown a functional relation pattern. The possible reasons of differed response to various treatments were discussed.  相似文献   

4.
InAs quantum dots (QDs) have been formed on GaAs (001) substrate by metal-organic vapor phase epitaxy (MOVPE) under the safer growth conditions: using tertiarybutylarsine (TBA) to replace AsH3 as the arsenic source and replacing hydrogen by pure nitrogen as the carrier gas. Effects of growth conditions on the QD formation have been investigated. It is observed that the wetting layer is stabilized with some material being transferred to form the QDs due to the strain relaxation process during the QD formation. Dot size dispersion becomes broader when the post-growth interruption is more than 20 s. Compared with normal one-step grown QDs, dot density increases greatly by 213% after employing two-step deposition for QD growth. This is explained by considering the indium-flux-dependent nucleation density at step 1 and kinetically self-limiting growth at step 2. The two photoluminescence (PL) emission peaks, 1.203 μm and 1.094 μm, from the two-step grown QDs are attributed to E1–HH1 and E1–LH1 transitions of the QDs, respectively. The measured results agree well with those received by an 8 k·p theoretical calculation. The narrow PL linewidth of ~50 nm shows high quality of the QDs. This paves the way to develop safer MOVPE process, using TBA/N2 instead of AsH3/H2, to grow QDs for device application.  相似文献   

5.
Series of squaraine benzothiazole and benzoselenazole dyes were studied as possible fluorescent probes for the detection of proteins, particularly albumins. It was shown that majority of the studied squaraines give significant fluorescent response on the human serum albumin (HSA) and bovine serum albumin presence. For squaraine dyes with N-hexyl pendent groups (P-1, P-2, P-3, P-5) about 100−540-fold fluorescence intensity increase upon albumins addition was observed. At the same time in presence of other proteins, namely insulin, avidin from hen egg white, immunoglobulin G (IgG), carbonic anhydrase fluorescence enhancement values were considerably lower —up to 43 times in IgG presence. It was noted that generally, squaraines with long N-hexyl pendent groups demonstrate higher emission increase values upon proteins addition comparing with their analogues with short N-ethyl tails. It was shown that fluorescence intensity enhancement for benzothiazole squaraine dye P-3, relates linearly to the HSA concentration over the wide range—from 0.2 to 500 μg/ml. Together with noticeable selectivity of this dye to albumins, existence of wide dynamic range gives possibility to propose P-3 dye as probe for HSA quantification.  相似文献   

6.
A highly sensitive and selective fluorogenic probe for fluoride ion, fluorescein di-tert-butyldimethylsilyl ether (FTBS), was designed and synthesized. FTBS was a colorless, non-fluorescent compound and was synthesized via the one-step reaction of fluorescein with tert-butyldimethylsilyl chloride. Upon incubation with fluoride ion in DMF-water solution (7 : 3, V/V), the Si-O bond of FTBS was cleaved, causing a large increase in fluorescence intensity and thereby allowing a selective detection of fluoride ion. The fluorescence increase is linearly with fluoride concentration in the range 0.1–2.0 μmol L−1 with a detection limit of 0.041 μmol L−1 (3σ). The excellent selective signaling behavior of the proposed probe was found to originate from the high affinity of silicon toward fluoride ion. The method has been successfully applied to the fluoride determination in multi-trace elements injection and toothpaste samples, and the results are agreed well with those obtained by the fluoride-ion selective electrode method.  相似文献   

7.
As one of nucleic acid molecular “light switch”, Ru(bipy)2(dppx)2+ is a good probe for the determination of double-helical DNA, which displays intense fluorescence when double-helical DNA is present. However, the fluorescence of Ru(bipy)2(dppx)2+ is quenched when Ag+ is added to the Ru(bipy)2(dppx)2+-DNA system. Based on the quenching of the fluorescence of Ru(bipy)2(dppx)2+-DNA system by Ag+, a simple, rapid and specific method for Ag+ determination was proposed. In the optimum conditions, Ag+ concentration versus Ru(bipy)2(dppx)2+ fluorescence intensity gave a linear response in the range from 0.2 to 6.0 μM with a detection limit (3σ) of 3.2 × 10−8 M. The proposed method has been applied to determine the Ag+ in water samples and sulfadiazine silver cream successfully. Because of the intense fluorescence of Ru(bipy)2dppx2+ when DNA is present, the interaction between Ag+ and DNA was confirmed by fluorescence microscopy and the phenomenon of the fluorescence images agreed well with the results. The possible mechanism of the reaction was also discussed by circular dichroism spectra and isothermal titration calorimetry.  相似文献   

8.
In this paper we reported a metal complex 1-Zn (2,5-di-[2-(3,5-bis(2-pyridylmethyl)amine-4-hydroxy-phenyl)-ethylene]-pyrazine-Zn) as a fluorescent probe sensing DNA. The result of the competitive experiment of the probe with ethidium bromide (EB) to bind DNA, absorption spectral change and polarization change in the presence and absence of DNA revealed that interaction between the probe and DNA was via intercalation. Ionic strength experiment showed the existence of electrostatic interaction as well. Scatchard plots also confirmed the combined binding modes. The fluorescence enhancement of the probe was ascribed to highly hydrophobic environment when it bound the macromolecules such as DNA, RNA or denatured DNA. The binding constant between the probe and DNA was estimated as 3.13 × 107 mol−1 L. The emission intensity increase was proportional to the concentration of DNA. Based on this, the probe was used to determine the concentration of calf thymus DNA (ct-DNA). The corresponding linear response ranged from 2.50 × 10−7 to 4.75 × 10−6 mol L−1, and detection limit was 1.93 × 10−8 mol L−1 for ct-DNA.  相似文献   

9.
We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 μm2/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 μm2/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 μm2/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 μm2/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec).  相似文献   

10.
Luminescent quantum dots (QDs)-semiconductor nanocrystals were promising alternative to organic dyes for fluorescence-based applications. In this paper, we developed procedures to use mercaptoacetic acid (MAA) to modify ZnSe nanoparticles and made the nanoparticles to be soluble for the quantitative and selective determination of bovine serum albumin (BSA). Maximum fluorescence intensity was produced at pH 7.0, with excitation and emission wavelengths at 242 and 348 nm, respectively. Under optimal conditions, the straight line equation: F = 0.38 + 0.34 C (μg/ml) was found between the relative fluorescence intensity and the concentration of BSA in the range of 9.6–124.8 μg/ml, and the limit of detection was 2 μg/ml.  相似文献   

11.
In this paper, ZnSe nanoparticles, which were modified with mercaptoacetic acid (MAA), worked as novel fluorescence sensors for the quantitative determination of copper(II) and nickel(II). Under the optimal conditions, the fluorescence intensities of functionalized ZnSe nanoparticles were quenched by the addtion of copper(II) or nickel(II) ions, there were linear relationships between the relative fluorescence intensity (logF0/F) and the concentration in the range of 140–2,000 μg/L for copper(II) (R = 0.9973) and 30–1,000 μg/L for nickel(II) (R = 0.9992), the limits of detection were 50 μg/L and 5 μg/L, respectively.  相似文献   

12.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

13.
14.
In our study, terbium-acetylacetone (Tb-acac) composite nanoparticles have been prepared under vigorous ultrasonic irradiation. The nanoparticles are water soluble, stable and have extremely narrow emission bands and high internal quantum efficiencies. They were used as fluorescence probes in the determination of enoxacin (Enox) based on the fluorescence enhancement of nanoparticles through fluorescence resonance energy transfer (FRET). The influence of buffer solution on the fluorescence intensity was investigated. Under the optimum conditions, the fluorescence intensity of the Tb-acac-Enox system is linearly proportional to the Enox concentration in the Enox concentration range of 2 × 10−7–1 × 10−4 M. The correlation coefficient for the calibration curve was 0.9976. The limit of detection as defined by IUPAC, C LOD = 3S b/m (where S b is the standard deviation of the blank signals and m is the slope of the calibration graph) was found to be 3 × 10−8 M. The relative standard deviation (RSD) for six repeated measurements of 1 × 10−4 M Enox was 1.35%. The method was applied to the determination of Enox in pharmaceutical formulation and recovery results were obtained from urine samples.  相似文献   

15.
This article highlights some physical studies on the relaxation dynamics and Förster resonance energy transfer (FRET) of semiconductor quantum dots (QDs) to proximal dye molecule and the way these phenomena change with core to core-shell QD is discussed. Efforts to understand the optical and carrier relaxation dynamics of CdSe and CdSe/ZnS QDs are made by using absorption, steady-state fluorescence and time-resolved fluorescence (TCSPC) techniques. Steady-state as well as time-resolved fluorescence measurements were employed to evaluate the QD PL quenching induced by the proximal Rhodamine 101 dye molecule and to examine the influence of deep trap states on energy transfer efficiency. The FRET parameters such as spectral overlap, Förster distance, intermolecular distance for each donor-acceptor pair are determined and variation of these parameters from core to core-shell QD is discussed.  相似文献   

16.
Employing the transfer matrix method, we study the electromagnetic field of one-dimensional photonic crystals with a defect inserted by pairs of μ-negative (MNG) and ε-negative (ENG) material layers. The fields within the pairs of layers and the matrix defect are independent of each other, and the whole field is their superposition. The whole defect field can be significantly enhanced by pairs of ε-negative and μ-negative layers. In contrast to the conventional defect modes, the intensity and volume of the defect field with pairs of ε-negative and μ-negative layers can be precisely adjusted.  相似文献   

17.
Gan X  Liu S  Liu Z  Hu X 《Journal of fluorescence》2012,22(1):129-135
A novel fluorescence quenching method for the determination of tetracaine hydrochloride (TA·HCl) concentration with some aromatic amino acids as fluorescence probe has been developed. In pH 6.3 acidic medium, tryptophane (Trp), tyrosine (Tyr) or phenylalanine (Phe) can react with tetracaine hydrochloride to form an ion-association complex by electrostatic attraction, aromatic stacking interaction and Van der Waals’ force, which lead to fluorescence quenching of above amino acids. The maximum fluorescence excitation and emission wavelengths of them are located at 278, 274, 258 nm and 354, 306, 285 nm, respectively. The relative fluorescence intensity (F 0/F) is proportional to the TA·HCl concentration in certain range. The linear ranges and detection limits are 1.2–5.0 μg/mL and 0.37 μg/mL for Tyr-TA·HCl system, 1.3–6.0 μg/mL and 0.38 μg/mL for Trp-TA·HCl system, and 1.4–6.0 μg/mL and 0.41 μg/mL for Phe-TA·HCl system. The optimum reaction conditions, influencing factors and the effect of coexisting substances are investigated. And the results show the method has a good selectivity. Judging from the effect of temperature, the Stern-Volmer plots and fluorescence lifetime determination, the quenching of fluorescence of amino acids by TA·HCl is a static quenching process.  相似文献   

18.
The use of two-photon excitation of fluorescence for detection of fluorescence resonance energy transfer (FRET) was studied for a selected fluorescent donor–acceptor pair. A method based on labeled DNA was developed for controlling the distance between the donor and the acceptor molecules. The method consists of hybridization of fluorescent oligonucleotides to a complementary single-stranded target DNA. As the efficiency of FRET is strongly distance dependent, energy transfer does not occur unless the fluorescent oligonucleotides and the target DNA are hybridized. A high degree of DNA hybridization and an excellent FRET efficiency were verified with one-photon excited fluorescence studies. Excitation spectra of fluorophores are usually wider in case of two-photon excitation than in the case of one-photon excitation [1]. This makes the selective excitation of donor difficult and might cause errors in detection of FRET with two-photon excited fluorescence. Different techniques to analyze the FRET efficiency from two-photon excited fluorescence data are discussed. The quenching of the donor fluorescence intensity turned to be the most consistent way to detect the FRET efficiency. The two-photon excited FRET is shown to give a good response to the distance between the donor and the acceptor molecules.  相似文献   

19.
Li Y  Zhang X  Zhu B  Xue J  Yan J 《Journal of fluorescence》2011,21(4):1343-1348
A disulfide linked naphthalimide dimer probe was designed for mercury ion (Hg2+) recognition in this work. The recognition was based on the strong affinity of mercury for sulfur. The experimental results revealed that the probe exhibited high selectivity and sensitivity toward Hg2+ in comparison to other metal ions via a turn-on and reversible response to Hg2+ in neutral buffer solution. More importantly, the probe demonstrated a linear response for Hg2+ over a concentration range from 0 to 150 μM with a detection limit of 0.38 μM, which is just the limit of the safe concentration for humans. Upon addition of 150 μM Hg2+, the enhancement of fluorescence reached a maximum (∼7-fold). The performances of the probe indicated that it could meet the selectivity requirements for biomedical and environmental application and also was sensitive enough to detect Hg2+ in environmental and biological samples.  相似文献   

20.
Quantum dot (QD) lasers exhibit many interesting and useful properties such as low threshold current, temperature insensitivity or chirpless behavior. In order to reach the standards of long-haul optical transmissions, 1.55 μm InAs QD lasers on InP substrate have been developed. Based on time resolved photoluminescence (PL) measurements, carrier dynamics behavior is at first investigated. Electroluminescence (EL) results are then shown at room temperature exhibiting a laser emission centered at 1.61 μm associated to a threshold current density as low as 820 A/cm2 for a six InAs QD stacked layers. Finally, a rate equation model based on the reservoir theory is used to model both time-resolved photoluminescence (TRPL) and electroluminescence results. It is shown that carrier dynamic calculations are in a good agreement with measurements since the saturation effect occurring at high injected power is clearly predicted. P. Miska: Previously at Laboratoire d’Etude des Nanostructures à Semiconducteurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号