首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of pyridine functionalized TbF3 nanoparticles are described in this report. Synthesized nanoparticles were characterized using the TEM, UV/Vis, FTIR and photoluminescence spectroscopy. TEM micrograph reveals the nanorod shaped, uniform in size with a particles size in the range of 20–30 nm. FTIR spectrum shown characteristic absorption bands of pyridine and a small intensity band at 411 cm−1 corresponding metal nitrogen ν(Tb–N) bonding. Uv-vis spectrum shown the characteristic absorption transitions of Tb3+ ion. A strong emission transition at 540 nm (5D47F5) was observed on excite by visible light at 414 nm.  相似文献   

2.
Transparent Ni2+-doped β-Ga2O3 glass–ceramics were synthesized. The nanocrystal phase in the glass–ceramics was identified to be β-Ga2O3 and its size was about 3.6 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-cast glass to the octahedral sites in the glass–ceramics. The broadband infrared emission centering at 1270 nm with full width at half maximum (FWHM) of more than 250 nm was observed. The fluorescence lifetime was about 1.1 μs at room temperature. The observed infrared emission could be attributed to the 3 T 2g (3 F )→3 A 2g (3 F ) transition of octahedral Ni2+ ions. It is suggested that the Ni2+-doped transparent β-Ga2O3 glass–ceramics with broad bandwidth and long lifetime have a potential as a broadband amplification medium. PACS 42.70.-a; 42.70.Ce; 81.40.Tv  相似文献   

3.
Steady state and time resolved fluorescence quenching behaviors of meso-Tetrakis (pentafluorophenyl) porphyrin (H2F20TPP) in presence of different aliphatic and aromatic amines have been executed in homogeneous dichloromethane (DCM) solution. At room temperature in DCM, free base (H2F20TPP) shows fluorescence with two distinct peaks at 640 and 711 nm and natural lifetime τ f = 9.8 ns which are very similar to that of meso-tetraphenyl porphyrin (TPP). Unlike TPP, addition of both aliphatic and aromatic amines to a solution containing H2F20TPP results in an efficient decrease in fluorescence intensity without altering the shape and peak position of fluorescence emission. Upon addition of amines there was no change in optical absorption spectra of H2F20TPP. The fluorescence quenching rate constants ranged from 1 × 109 to 4 × 109 s−1, which are one order below to the diffusion control limit, and temperature dependent quenching rate constants yield the activation energies which are found to be order of 0.1 eV. Femto second transient absorption studies reveal the existence of amine cation radical and porphyrin anion radicals with very short decay time (15 ps). The fluorescence quenching reaction follows Stern–Volmer kinetics. Steady state and time-resolved data are interpreted within general kinetic scheme of Marcus semi-classical model which attributes bimolecular electron transfer process between amines and the lowest excited singlet state of H2F20TPP. Calculated internal reorganization energies are found to be in between 0.04 and 0.22 ev. Variation of electron transfer rate as function of free energy change (∆G0) points the ET reactions in the present systems are in Marcus normal region. This is the first example of reductive fluorescence quenching of free base neutral porphyrins in homogeneous organic solvent ever known.  相似文献   

4.
Gan X  Liu S  Liu Z  Hu X 《Journal of fluorescence》2012,22(1):129-135
A novel fluorescence quenching method for the determination of tetracaine hydrochloride (TA·HCl) concentration with some aromatic amino acids as fluorescence probe has been developed. In pH 6.3 acidic medium, tryptophane (Trp), tyrosine (Tyr) or phenylalanine (Phe) can react with tetracaine hydrochloride to form an ion-association complex by electrostatic attraction, aromatic stacking interaction and Van der Waals’ force, which lead to fluorescence quenching of above amino acids. The maximum fluorescence excitation and emission wavelengths of them are located at 278, 274, 258 nm and 354, 306, 285 nm, respectively. The relative fluorescence intensity (F 0/F) is proportional to the TA·HCl concentration in certain range. The linear ranges and detection limits are 1.2–5.0 μg/mL and 0.37 μg/mL for Tyr-TA·HCl system, 1.3–6.0 μg/mL and 0.38 μg/mL for Trp-TA·HCl system, and 1.4–6.0 μg/mL and 0.41 μg/mL for Phe-TA·HCl system. The optimum reaction conditions, influencing factors and the effect of coexisting substances are investigated. And the results show the method has a good selectivity. Judging from the effect of temperature, the Stern-Volmer plots and fluorescence lifetime determination, the quenching of fluorescence of amino acids by TA·HCl is a static quenching process.  相似文献   

5.
The polarized absorption spectra of Tm3+-doped potassium yttrium tungstate (Tm:KY(WO4)2) crystal at room temperature were measured. The emission spectrum and lifetime of the 3 F 4 excited state were determined. Using standard and modified Judd–Ofelt theories, the intensity parameters and the radiative lifetimes were calculated and good agreement with the experimental results was obtained for both theories. Continuous-wave laser operation in Tm:KYW crystal under laser diode pumping at 802 nm and 1750 nm was demonstrated with slope efficiency of 53% and 28% and output power of about 555 mW and 86 mW, respectively. PACS 42.55.Xi; 42.60.Pk; 42.70.Hj  相似文献   

6.
Fluorescence-detected circular dichroism (FDCD) was introduced into the study of protein conformation changes. Actin was used as a model protein which undergoes dynamic conformation changes as it polymerizes. Actin labeled with N-(1-pyrene)iodoacetamide (PIA) showed monomer fluorescence peak at 386 and 410 nm, and excimer fluorescence peak at around 480 nm. Excimer was formed by PIA-dimers labeled to different sites of amino acid residues. New information concerned with actin structural changes were monitored by fluorescence emission spectra excited with left- and right-circulary polarized light at 355 nm. FDCD intensities were shown as the difference in the fluorescence emission ΔF, where ΔF=(F LF R)/(F L+F R) denoting F L and F R as emissions obtained by excitation with left- and right-circulary polarized light. When solvent conditions of PIA-actin were changed by addition of NaCl, TFE, or ATP, ΔF showed sensitive responses to these compounds. From the analysis of ΔF M and ΔF E which represent the peaks of ΔF at the monomer- and excimer-emission band, the information concerned with the actin intrastructural changes were obtained. This method based on monitoring the excimer fluorescence with FDCD could be used for other proteins to extract finer structural changes that cannot be detected by the normal fluorescence spectroscopy.  相似文献   

7.
The fluorescence properties of N,N-di(2-carboxyethyl)-p-anisidine (I) in solvents of various nature and in the crystalline state have been studied at room temperature (273 K) and at the boiling point of liquid nitrogen (77 K). Fluorescence in aqueous solutions of I with protonated (λ ex fl max = 225/290 nm) and unprotonated (λ ex fl max = 270/380 nm) amino nitrogen has been detected. On going from aqueous solutions to nonaqueous, the fluorescence band of unprotonated I experiences a blue shift and its intensity rises. The fluorescence intensity of the band in aprotic polar solvents is higher than that in protic solvents. A linear dependence of the fluorescence intensity of deprotonated I on Cu(II) concentration (ranging from 1.0 to 5.0 mg/dm3) in aqueous solution has been found. The fluorescence intensity of I in aqueous solutions at 77 K and pH 1–6 has been shown to increase in the presence of Zn(II) (1–170 mg/dm3) and Cd(II) (2–330 mg/dm3) although a similar dependence is not observed at 293 K.  相似文献   

8.
This is a study of the luminescence properties of coatings formed on aluminum alloys by anodizing in electrolytic solutions based on oxalic, sulfuric, and tartaric-sulfonic acids. At least two emission centers, with band maxima in the ranges of 390–410 and 470–510 nm, can be reliably identified in the photoluminescence spectra. The first type of center is characterized by single-band photoluminescence excitation spectra and the second, by two-band spectra. An analysis of the two-band photoluminescence excitation (PLE) spectra in the range of 470–510 nm shows that the position of the narrow short-wavelength PLE spectrum near 272 nm is independent of the type of acid used in the anodization process. The position and shape of the other PLE spectral bands depend both on the type of acid used and on the processing of the alloy or alumina surfaces. It is assumed that defect-free alumina centers are responsible for the 272 nm PLE band, while the other photoluminescence bands are caused primarily by different divacancies of oxygen (F2+ {F_2^+} , F 2, and F2+2 {F_2^{+2}} centers) whose origin is governed by the type of electrolyte.  相似文献   

9.
The dependence of the luminescence of the new anionic dye Pyron Red (PR) on the polarity of the medium is investigated. Upon passage from an aqueous phase to a nonpolar phase, PR shows a shortwave shift of the fluorescence emission maximum from 675 to 650 nm and an increase in the fluorescence quantum yield from 0.03 to 0.54–0.70. When complexed with human serum albumin, PR shows fluorescence excitation and emission maxima at 525 and 625 nm and a fluorescence quantum yield of 0.8. In a comparison of the luminescence properties of PR with those of the well-known probes ANS and K35 in water and a complex with albumin, PR is shown to have the maximum absolute sensitivity but a lower fluorescence enhancement upon binding with a protein compared to ANS. A convenient criterion of the probe sensitivity toward binding with a protein that is defined as the ratio of the fluorescence intensities of the protein-bound and the free probe AF=Fb/Ff is proposed. The value of AF(35) for the PR probe ranks between those for the K35 probe with a low AF(18) and ANS with a high AF(105). Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 3, pp. 369–374, May–June, 1999.  相似文献   

10.
A simple hydrothermal process has been proposed to systematically synthesize europium-doped yttrium phosphate-vanadates with general formula YV1 − xPxO4:Eu3+ (x = 0–1.0). All the YV1 − xPxO4:Eu3+ products were characterized by x-ray diffraction (XRD) and transmission electron microscopy (TEM), the results of which revealed they were single-phase tetragonal-structured nanocrystals with diameter of 20 nm and their cell parameter a exhibited a linear relationship with the x value. Photoluminescence (PL) excitation and emission intensities of the products were sensitive to the x value and the change of the PL intensity with x was a wave-like curve which reached the peak at x = 0.4 and 0.8. In addition, the x value had an obvious influence on the (5D07F2)/(5D07F1) intensity ratio of Eu3+.  相似文献   

11.
The Er3+ -Yb3+ codoped in Li2O content tungsten -tellurite (TWL) transparent glasses are synthesized and measured the absorption, Raman and upconversion luminescence (UPL) spectra. At room temperature intense green emission peak at 560 nm ( 4S3/24I15/2) and red emission peak at 670 nm ( 4F9/24I15/2) of Er3+ observed even at minimum 86 mW pumping power of infrared 980 nm excitation. For structure of the TWL glass, Raman spectrum result revealed that an important role of WO3 in the formation of glass network linkage with Li2O. Under this influence estimated lifetime of the 4I11/2 of Er3+ was 1.89 μs and due to lower phonon energy of the glass produce strong upconversion signal. The effect of Er2O3 concentration on emission intensity result indicated that green emission intensity initially increase in compare to red emission. Under the 980 nm pump power variation measured the relatively increases the red emission to the green emission intensity and analyze the possible upconversion mechanism and process.  相似文献   

12.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

13.
Ho3+–Yb3+ co-doped Y2O3 nanocrystals were synthesized by firing hydroxy carbonate precursors. Yb3+-concentration-dependent up-conversion properties of Ho3+ in Y2O3 nanocrystals have been investigated. The relative intensity of up-converted red emission increases more quickly than that of the green and the near-infrared ones with the enhancement of the concentration of Yb3+. It is believed that the energy process 5 S 2 (5F4) (Ho) + 5 I 7 (Ho) →5 I 6 (Ho)+5 F 5 (Ho) plays an important role in the population of the 5 F 5 level of Ho3+. The result indicates that the intensity ratio of the green emission to the red one can be tuned by changing the sensitizer concentration. PACS 78.55.-m  相似文献   

14.
The kinetics of luminescence and transformation of short-lived products of the photolysis of europium and lanthanum complexes with thenoyltrifluoroacetone and 1,10-phenanthroline and their mixtures in polymethyl methacrylate films was studied by the nanosecond laser photolysis method with recording both light emission and absorption. Fast (535 and 585 nm, 5 D 17 F 0, 7 F 3, decay time 0.7 μs) and slow (613 nm, 5 D 07 F 2, luminescence rise and decay times 0.7 μs and 0.5 ms, respectively) luminescence was studied. Induced absorption with a maximum at 600 nm and decay time ∼3 ms was observed; this absorption was assigned to triplet states of the deprotonated form of thenoyltrifluoroacetone. The dependences of luminescence intensity on the concentration of the components in a mixture of complexes were analyzed, and synergistic effects of luminescence strengthening were estimated. The kinetics of a decrease in luminescence intensity during photolysis was studied. Possible mechanisms of a decrease in the relative initial process rate and an increase in the quasi-stationary value of relative luminescence intensity as the concentration of complexes in the polymer increased were discussed.  相似文献   

15.
We present the results of spectroscopic and polarization studies of dilute rubidium vapor exposed to a single-frequency linearly polarized diode laser radiation in a spectral range of atomic D2 line. We report the origin of a circularly polarized radiation on V-type transitions of 87Rb F g = 2 → F e = 3 and 85Rb F g = 3 → F e = 4, and amplification of this radiation in backward direction caused by a partial population inversion among magnetic sublevels of the ground and excited levels. This is confirmed experimentally by high directivity of backward radiation, absence in its spectrum of 85Rb F g = 2 → F e = 1 (Λ-type) radiation, as well as by different nature of intensity dependences of backward and fluorescence radiations.  相似文献   

16.
Luminescent quantum dots (QDs)-semiconductor nanocrystals were promising alternative to organic dyes for fluorescence-based applications. In this paper, we developed procedures to use mercaptoacetic acid (MAA) to modify ZnSe nanoparticles and made the nanoparticles to be soluble for the quantitative and selective determination of bovine serum albumin (BSA). Maximum fluorescence intensity was produced at pH 7.0, with excitation and emission wavelengths at 242 and 348 nm, respectively. Under optimal conditions, the straight line equation: F = 0.38 + 0.34 C (μg/ml) was found between the relative fluorescence intensity and the concentration of BSA in the range of 9.6–124.8 μg/ml, and the limit of detection was 2 μg/ml.  相似文献   

17.
Direct synthesis of ZnS nanocrystallites doped with Ti3+ or Ti4+ by precipitation has led to novel photoluminescence properties. Detailed X-ray diffraction (XRD), fluorescence spectrophotometry, UV–vis spectrophotometry and X-ray photoelectron spectroscopy (XPS) analysis reveal the crystal lattice structure, average size, emission spectra, absorption spectra and composition. The average crystallite size doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2.6±0.2 nm. The nanoparticles can be doped with Ti3+ and Ti4+ during the synthesis without the X-ray diffraction pattern being altered. The strong and stable visible-light emission has been observed from ZnS nanocrystallites doped with Ti3+ (its maximum fluorescence intensity is about twice that of undoped ZnS nanoparticles). However, the fluorescence intensity of the ZnS nanocrystallites doped with Ti4+ is almost the same as that of the undoped ZnS nanoparticles. The emission peak of the undoped sample is at 440–450 nm. The emission spectrum of the doped sample consists of two emission peaks, one at 420–430 nm and the other at 510 nm. Received: 27 April 2001 / Accepted: 16 August 2001 / Published online: 17 October 2001  相似文献   

18.
香蕉叶片Chla荧光动力学参量对激发光强的反应   总被引:5,自引:4,他引:1  
习岗  杨初平  宋清  李海 《光子学报》2001,30(9):1041-1044
在蓝色激发光(λm=660nm)作用下,香蕉叶片的叶绿素a(Chla)发出波长为720~740nm的荧光信号,荧光强度随时间呈现有规律的变化.随着激发光强的增加,荧光动力学参量F0FVI/FV呈上升趋势,FV/F0FV/FM逐渐达到饱和,而CA和T1/2呈下降趋势.研究结果表明,保证香蕉叶片光合机构高速有序运转的适宜光强在20~60μmol·m-2·s-1之间,过量的光强将造成叶片光合机构的损伤.讨论了香蕉叶片诸荧光动力学参量的生物学意义及其随激发光强度增加而变化的原因.  相似文献   

19.
A Tm3+-doped NaLa(WO4)2 single crystal with a dimension of Φ20 mm×40 mm was grown by the Czochralski method. Anisotropic thermal expansion coefficients of this crystal were investigated. Polarized absorption spectra, emission spectra and decay curve were recorded at room temperature. The absorption and emission cross-section were presented. Based on the Judd–Ofelt analysis, we obtained the three intensity parameters: Ω2=10.21×10-20, Ω4=2.66×10-20, and Ω6=1.46×10-20 cm2. The radiative probabilities, radiative lifetimes, and branch ratios of Tm3+:NaLa(WO4)2 were calculated, too. Luminescence lifetime of the 3 H 4 level was measured to be 220 μs. The stimulated emission cross-section for the 3 F 43 H 6 transition were determined using the reciprocity method, potential laser gain for this transition were also investigated, the gain curves implied that the tunable range is up to 200 nm. PACS 42.70.Hj; 78.20.-e  相似文献   

20.
The UV radiation of glow- and capacitive-discharge lamps based on mixtures of inert gases with iodine vapors are optimized in the spectral range of 175–360 nm, in which working helium-iodine mixtures of different compositions are used. The most intense spectral lines in the bactericidal region of the spectrum were the atomic lines of iodine (183.0, 206.2 nm), and in the region of 320–360 nm, emission of the spectral band of an iodine molecule prevailed with a maximum at λ = 342 nm. For a capacitive lamp with a casing opaque in the spectral range λ < 250 nm, the main part of the plasma emission power is concentrated in the A′-D′ band of an iodine molecule with a maximum at 342 nm. The emission brightness of this lamp is optimized in iodine molecule transitions depending on the partial helium pressure. We present the results of simulating the kinetics of processes in a glow-discharge plasma in mixtures of He, Xe, and iodine vapors. We establish the dependence of the main part of the emission intensity of the 206.2 nm spectral line of an iodine atom and the 342 nm band of an iodine molecule on the helium pressure in a glow-discharge lamp operating on a He-I2 mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号