首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   7篇
物理学   17篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2001年   3篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
The intercalation of cations into layered-structure electrode materials has long been studied in depth for energy storage applications. In particular, Li+-, Na+-, and K+-based cation transport in energy storage devices such as batteries and electrochemical capacitors is closely related to the capacitance behavior. We have exploited different sizes of cations from aqueous salt electrolytes intercalating into a layered Nb2CTx electrode in a supercapacitor for the first time. As a result, we have demonstrated that capacitive performance was dependent on cation intercalation behavior. The interlayer spacing expansion of the electrode material can be observed in Li2SO4, Na2SO4, and K2SO4 electrolytes with d-spacing. Additionally, our results showed that the Nb2CTx electrode exhibited higher electrochemical performance in the presence of Li2SO4 than in that of Na2SO4 and K2SO4. This is partly because the smaller-sized Li+ transports quickly and intercalates between the layers of Nb2CTx easily. Poor ion transport in the Na2SO4 electrolyte limited the electrode capacitance and presented the lowest electrochemical performance, although the cation radius follows Li+>Na+>K+. Our experimental studies provide direct evidence for the intercalation mechanism of Li+, Na+, and K+ on the 2D layered Nb2CTx electrode, which provides a new path for exploring the relationship between intercalated cations and other MXene electrodes.  相似文献   
2.

Background  

Growth hormone (GH) plays an incompletely understood role in the development of the central nervous system (CNS). In this study, we use transgenic mice expressing a growth hormone antagonist (GHA) to explore the role of GH in regulating postnatal brain, spinal cord and body growth into adulthood. The GHA transgene encodes a protein that inhibits the binding of GH to its receptor, specifically antagonizing the trophic effects of endogenous GH.  相似文献   
3.
Luminescent properties of carbocyanine dyes Stains-All and its isomer iso-Stains-All were studied in the presence of nucleic acids. Both dyes show sufficient fluorescent intensity increase in the presence of DNA and RNA and may be used as fluorescent probes for nucleic acids (NA) detection in homogeneous assays. It was supposed that Stains-All and iso-Stains-All bind with nucleic acids through different interaction modes.  相似文献   
4.
Novel benzothiazolopyridinium homo-n-mer cyanine dyes are proposed for nucleic acid fluorescent detection. Dependence of the sensitivity of detection in solution from the dye molecules/DNA base pairs ratio was studied. It was shown that the presence of the dye excess could significantly decrease the detection limit. We believe this could be explained by the formation of the dye aggregates on DNA surface.  相似文献   
5.
Series of homodimer styryls containing on (p-dimethylaminostyryl) pyridinium residues that are connected with aliphatic linkage group was synthesized. Spectral luminescent properties of obtained dyes in free state and in nucleic acids presence were studied. It was shown that DNA binding affinity of the novel homodimers exceeds that of parent monomer (p-dimethylaminostyryl)pyridine iodide. For homodimers with the linkage 4–10 carbon atoms preference in binding to DNA than to RNA was observed. It could be concluded that parent monomer has different mechanisms of binding to nucleic acids than corresponding homodimer dye.  相似文献   
6.
The dimeric cyanine dyes, YOYO-1 and TOTO-1, are widely used as DNA probes because of their excellent fluorescent properties. They have a higher fluorescence quantum yield than ethidium homodimer, DAPI and Hoechst dyes and bind to double-stranded DNA with high affinity. However, these dyes are limited by heterogeneous staining at high dye loading, photocleavage of DNA under extended illumination, nicking of DNA, and inhibition of the activity of DNA binding enzymes. To overcome these limitations, seven novel cyanine dyes (Cyan-2, DC-21, DM, DM-1, DMB-2OH, SH-0367, SH1015-OH) were synthesized and tested for fluorescence emission, resistance to displacement by Mg2+, and the ability to function as reporters for DNA unwinding. Results show that Cyan-2, DM-1, SH-0367 and SH1015-OH formed highly fluorescent complexes with dsDNA. Of these, only Cyan-2 and DM-1 exhibited a large fluorescence enhancement in buffers, and were resistant to displacement by Mg2+. The potential of these two dyes to function as reporter molecules was evaluated using continuous fluorescence, DNA helicase assays. The rate of DNA unwinding was not significantly affected by either of these two dyes. Therefore, Cyan-2 and DM-1 form the basis for the synthesis of novel cyanine dyes with the potential to overcome the limitations of YOYO-1 and TOTO-1.  相似文献   
7.
The influence of methyl-, 2-hydroxyethyl-, dimethyl-, diethyl- and benzoyl-amino substituents in the 6,6'-positions of benzothiazole heterocycle of trimethine cyanines on their spectral-luminescent properties and behavior in presence of DNA, RNA and BSA was studied. It was shown that incorporation of 6,6'-substituents generally leads to the increase in dyes tendency to aggregation, resulting in the considerable decrease in the emission intensity of the disubstituted dyes as compared to the unsubstituted ones. Emission of the studied 6,6'-disubstited dyes in DNA presence is considerably more intensive than in presence of RNA, that points on the existing of DNA binding preference for the mentioned dyes. Insertion of benzoyl-amino groups into the 6,6'-positions permitted us to design the DNA-sensitive dyes on the basis of symmetric trimethine cyanines with unsubstituted polymethine chain, while typically such dyes slightly respond on the presence of biopolymers. 6,6'-Benzoyl-amino-disubstituted trimethine cyanines are proposed as efficient dyes for DNA detection.  相似文献   
8.
The pathogenesis of Parkinson’s disease that is the second most common neurodegenerative disease is associated with formation of different aggregates of α-synuclein (ASN), namely oligomers and amyloid fibrils. Current research is aimed on the design of fluorescent dyes for the detection of oligomeric aggregates, which are considered to be toxic and morbific spices. Fluorescent properties of series of benzothiazole trimethine and pentamethine cyanines were characterized in free state and in presence of monomeric, oligomeric and fibrilar ASN. The dyes with wide aromatic systems and bulky phenyl and alkyl substituents that are potentially able to interact with hydrophobic regions of oligomeric aggregates were selected for the studies. For majority of studied dyes noticeable changes in fluorescence characteristics were shown in the presence of fibrillar or oligomeric ASN, while the dyes slightly responded on the presence of monomeric protein. For pentamethine cyanine SL-631 and trimethine cyanine SH-299 certain specificity to oligomeric aggregates over fibrils was observed. Using these dyes at 10?6 M concentration permits the detection of oligomeric ASN in the concentrations range of at least 0.2–2 microM. Pentamethine cyanine SL-631 is proposed as dye for fluorescent detection of oligomeric aggregates of ASN, while trimethine cyanine SH-299 is shown to be a sensitive probe both on oligomeric and fibrillar ASN. It is proposed that wide aromatic system of SL-631 pentamethine dye molecule could better fix on the less dense and structured oligomeric formation, while less bulky and more “crescent-shape” molecule of trimethine dye SH-299 could easier enter into the groove of beta-pleated structure.  相似文献   
9.
Spectral properties of carbocyanine dye 3-methyl-2-[3-methyl-2-(3-methyl-2,3-dihydro-1,3-benzothiazole-2-iliden)-1- butenyl]-1,3-benzothiazole-3-il iodide (Cyan betaiPr) in water solution, as well as in the presence of different types of double stranded DNA have been studied. While in water solution of 'free' dye Cyan betaiPr stays mainly in monomeric form, in the presence of DNA the dye molecules form J-aggregates. The molecular structure of these J-aggregates causes the Davydov splitting of their absorption band, corresponding to the first electronic transition. A study of site-specificity showed that in the presence of poly (dA/dT) the majority of Cyan betaiPr molecules form J-aggregates, while in the presence of poly (dGC/dGC) dye molecules stay mainly in monomeric form and in presence of chicken erythrocytes DNA both J-aggregate and monomeric forms of dye are present. We suppose that Cyan betaiPr molecules aggregate in DNA groove, which serves as a template for J-aggregate forming. An increase of ionic strength of solution leads to the release of dye molecules from DNA grooves and prevents J-aggregates formation.  相似文献   
10.
A key feature of Parkinson’s disease is the formation and accumulation of amyloid fibrils of the natively unfolded protein α-synuclein (ASN) inside neurons. Recently we have proposed novel sensitive monomethinecyanine dye T-284 as fluorescent probe for quantitative detection of ASN amyloid fibrils. In this study the T-284 dye complex with ASN fibril was characterized by means of fluorescence anisotropy, atomic force microscopy and time-resolved fluorescence techniques to give further insights into the mode of dye interaction with amyloid fibrils. The fluorescence anisotropy of T-284 was shown to noticeably increase upon addition of aggregated proteins indicating on stable dye/amyloid fibril complex formation. AFM imaging of fibrillar wild-type ASN revealed differences in heights between ASN fibrils alone and in presence of the T-284 dye (6.37 ± 1.0 nm and 8.0 ± 1.1 nm respectively), that is believed to be caused by embedding of T-284 dye molecules in the “binding channel” running along the fibril. Fluorescence decay analysis of the T-284 in complexes with fibrillar ASN variants revealed the fluorescence lifetime values for T-284/fibril complexes to be an order of magnitude higher as compared to the free dye. Also, the fluorescence decay of free T-284 was bi-exponential, while dye bound to protein yields tri-exponential decay. We suppose that in complexes with fibrillar ASN variants T-284 dye might exist in different “populations” due to interaction with fibrils in different conformers and ways. The exact binding mode of T-284 with ASN fibrils needs further studies. Studied parameters of dye/amyloid fibril complexes are important for the characterization and screening of newly-developed amyloid-sensitive dyes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号