首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal isomerization of the title compounds was studied in the vapor phase. Over the temperature range from 445.1 to 477.5°K, 1,4-dimethylbicyclo[2.2.0]hexane underwent a homogeneous unimolecular reaction to 2,5-dimethyl-1,5-hexadiene, the rate constants being represented by the equation: k = 1.86 × 1011 exp (?31000 ± 1800/RT) sec?1. Over the temperature range from 630.0 to 662.2°K, 1,4-dimethylbicyclo[2.1.1]-hexane also underwent a unimolecular isomerization to the same product, the rate constants being given by the equation: k = 8.91 × 1014 exp (?56000 ± 900/RT) sec?1. The pyrolysis of 1,4-dimethylbicyclo[2.1.0]pentane gave 1,3-dimethylcyclopentene-1 and 2,4-dimethyl-1,4-pentadiene in the ratio of 9:1. The former reaction was influenced by surface effects but the latter was not. The rate constants for the formation of 2,4-dimethyl-1,4-pentadiene fitted the equation: k = 1.66 × 1017 exp (?57400 ± 3100/RT) sec?1. The effect of the two methyl groups at the bridgehead positions in these molecules in influencing the rate of decomposition is discussed in terms of the non-bonded repulsive forces between the substituents.  相似文献   

2.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

3.
The kinetics of the thermally and radiation initiated chain reaction between trichloroethylene and cyclopentane to produce 1,1-dichlorovinylcyclopentane and hydrogen chloride have been investigated in the temperature range 250–360°C at high pressure in the gas phase. The rate governing step in the chain is (k3 = 3.3 × 109 exp ?(4800/RT) cc mole?1 sec ?1). The rate of the unimolecular decomposition of trichloroethylene is 1.4 × 1014 exp ?(61,200/RT) sec?1.  相似文献   

4.
The kinetics of the reaction of cis-(NO)2 with solid oxygen to form iso-N2O4 have been studied between 13 and 29 K. The overall reaction is pseudo first order in cis-(NO)2, and solid oxygen serves both as a reactant and the matrix. The pseudo-first-order rate constants are calculated to be k(14N) = 4.25 × 10?2 exp(-103/RT), and k(15N) = 3.00 × 10?2 exp(-105/RT) sec?1, based on temperature measurements from a thermocouple junction which may be at most three degrees lower than the actual reacting film. Most significantly, however, 14k/15k = 1.55 at~13 K. The condensed phase reaction has been compared to that observed in the gas phase, and the extremely small pre-exponential factors and large isotope effects have been discussed in terms of tunneling corrections and orientational constraints. It is suggested that the form of the crystal plays an integral role in the observed process.  相似文献   

5.
Mixtures of N2O, H2, O2, and trace amounts of NO and NO2 were photolyzed at 213.9 nm, at 245°–328°K, and at about 1 atm total pressure (mostly H2). HO2 radicals are produced from the photolysis and they react as follows: Reaction (1b) is unimportant under all of our reaction conditions. Reaction (1a) was studied in competition with reaction (3) from which it was found that k1a/k31/2 = 6.4 × 10?6 exp { z?(1400 ± 500)/RT} cm3/2/sec1/2. If k3 is taken to be 3.3 × 10?12 cm3/sec independent of temperature, k1a = 1.2 × 10?11 exp {?(1400 ± 500)/RT} cm3/sec. Reaction (2a) is negligible compared to reaction (2b) under all of our reaction conditions. The ratio k2b/k1 = 0.61 ± 0.15 at 245°K. Using the Arrhenius expression for k1a given above leads to k2b = 4.2 × 10?13 cm3/sec, which is assumed to be independent of temperature. The intermediate HO2NO2 is unstable and induces the dark oxidation of NO through reaction (?2b), which was found to have a rate coefficient k?2b = 6 × 1017 exp {?26,000/RT} sec?1 based on the value of k1a given above. The intermediate can also decompose via Reaction (10b) is at least partially heterogeneous.  相似文献   

6.
Absolute rate constants are measured for the reactions: OH + CH2O, over the temperature range 296–576 K and for OH + 1,3,5-trioxane over the range 292–597 K. The technique employed is laser photolysis of H2O2 or HNO3 to produce OH, and laser-induced fluorescence to directly monitor the relative OH concentration. The results fit the following Arrhenius equations: k (CH2O) = (1.66 ± 0.20) × 10?11 exp[?(170 ± 80)/RT] cm3 s?1 and k(1,3,5-trioxane) = (1.36 ± 0.20) × 10?11 exp[?(460 ± 100)/RT] cm3 s?1. The transition-state theory is employed to model the OH + CH2O reaction and extrapolate into the combustion regime. The calculated result covering 300 to 2500 K can be represented by the equation: k(CH2O) = 1.2 × 10?18 T2.46 exp(970/RT) cm3 s?1. An estimate of 91 ± 2 kcal/mol is obtained for the first C? H bond in 1,3,5-trioxane by using a correlation of C? H bond strength with measured activation energies.  相似文献   

7.
NO2 was photolyzed with 2288 Å radiation at 300° and 423°K in the presence of H2O, CO, and in some cases excess He. The photolysis produces O(1D) atoms which react with H2O to give HO radicals or are deactivated by CO to O(3P) atoms The ratio k5/k3 is temperature dependent, being 0.33 at 300°K and 0.60 at 423°K. From these two points, the Arrhenius expression is estimated to be k5/k3 = 2.6 exp(?1200/RT) where R is in cal/mole – °K. The OH radical is either removed by NO2 or reacts with CO The ratio k2/kα is 0.019 at 300°K and 0.027 at 423°K, and the ratio k2/k0 is 1.65 × 10?5M at 300°K and 2.84 × 10?5M at 423°K, with H2O as the chaperone gas, where kα = k1 in the high-pressure limit and k0[M] = k1 in the low-pressure limit. When combined with the value of k2 = 4.2 × 108 exp(?1100/RT) M?1sec?1, kα = 6.3 × 109 exp (?340/RT)M?1sec?1 and k0 = 4.0 × 1012M?2sec?1, independent of temperature for H2O as the chaperone gas. He is about 1/8 as efficient as H2O.  相似文献   

8.
The pyrolysis of n-propyl nitrate and tert-butyl nitrite at very low pressures (VLPP technique) is reported. For the reaction the high-pressure rate expression at 300°K, log k1 (sec?1) = 16.5 ? 40.0 kcal/mole/2.3 RT, is derived. The reaction was studied and the high-pressure parameters at 300°K are log k2(sec?1) = 15.8 ? 39.3 kcal/mole/2.3 RT. From ΔS1,?10 and ΔS2,?20 and the assumption E?1 and E?2 ? 0, we derive log k?1(M?1·sec?1) (300°K) = 9.5 and log k?2 (M?1·sec?1) (300°K) = 9.8. In contrast, the pyrolysis of methyl nitrite and methyl d3 nitrite afford NO and HNO and DNO, respectively, in what appears to be a heterogeneous process. The values of k?1 and k?2 in conjunction with independent measurements imply a value at 300°K for of 3.5 × 105 M?1·sec?1, which is two orders of magnitude greater than currently accepted values. In the high-pressure static pyrolysis of dimethyl peroxide in the presence of NO2, the yield of methyl nitrate indicates that the combination of methoxy radicals with NO2 is in the high-pressure limit at atmospheric pressure.  相似文献   

9.
1,5-cyclooctadiene or 4-vinylcyclohexene mixture diluted with argon was heated to temperatures in the range 880–1230 K behind reflected shock waves. Profiles of IR-laser absorption were measured at 3.39 μm. From these profiles, rate constants k1 and k2 for the decyclization reactions 1,5-cyclooctadiene → biradical and 4-vinylcyclohexene → biradical were evaluated as k1 = 5.2 × 1014 exp(?48.3 kcal/RT) s?1 and k2 = 3.5 × 1014 exp(?55.3 kcal/RT) s?1, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The kinetics of the hydrogen–deuterium (H–D) exchange at both the methine (alpha) and methylene (gamma) positions of glutamic acid in deuterated hydrochloric acid solution has been studied in the temperature range of 383–433 K by 1H NMR detection. The reaction rates of H–D exchange at the two positions were described by applying multivariable linear regression (MLR) analysis and are determined as v = k[Glu]3.3[D3O+]1.5 mol L?1 h?1 with k = 3.52 × 1016 × exp (–1.37 × 105/RT) mol?3.8 L h?1 for the alpha position as well as v = k[Glu]1.0[D3O+]0.45 mol L?1 h?1 with k = 1.77 × 1012 × exp (–0.99 × 105/RT) mol?0.45 L h?1 for the gamma position. The Arrhenius activation energy (Ea) at the gamma position is less than that at the alpha position, which implies that the deuteration reaction at the gamma position proceeded more easily.  相似文献   

11.
Absolute rate coefficients for the reactions of the hydroxyl radical with dimethyl ether (k1) and diethyl ether (k2) were measured over the temperature range 295–442 K. The rate coefficient data, in the units cm3 molecule?1 s?1, were fitted to the Arrhenius equations k1 (T) = (1.04 ± 0.10) × 10?11 exp[?(739 ± 67 cal mol?1)/RT] and k2(T) = (9.13 ± 0.35) × 10?12 exp[+(228 ± 27 kcal mol?1)/RT], respectively, in which the stated error limits are 2σ values. Our results are compared with those of previous studies of hydrogen-atom abstraction from saturated hydrocarbons by OH. Correlations between measured reaction-rate coefficients and C? H bond-dissociation energies are discussed.  相似文献   

12.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

13.
The kinetics of the reaction of O + CH3OCH3 were investigated using fast-flow apparatus equipped with ESR and mass-spectrometric detection. The concentration of O(3P) atoms to CH3OCH3 was varied over an unusually large range. The rate constant for reaction was found to be k = (5.0 ± 1.0) × 1012 exp [(?2850 ± 200/RT)] cm3 mole?1 sec?1. The reaction O + CH3OH was studied using ESR detection. Based on an assumed stoichiometry of two oxygen atoms consumed per molecule of CH3OH which reacts, we obtain a value of k = (1.70 ± 0.66) × 1012 exp [(?2,280 ± 200/RT)] cm3 mole?1 sec?1 for the reaction The results obtained in this study are compared with the results from other workers on these reactions. The observation of essentially equal activation energies in these two reactions is indicative of approximately equal C? H bond strengths in CH3OCH3 and CH3OH. This is in agreement with recent measurements of these bond energies.  相似文献   

14.
The thermal unimolecular decomposition of three vinylethers has been studied in a VLPP apparatus. The high-pressure rate constant for the retro-ene reaction of ethylvinylether was fit by log k (sec?1) = (11.47 + 0.25) - (43.4 ± 1.0)/2.303 RT at <T> = 900 K and that of t - butylvinylether by log k (sec?1) = (12.00 ± 0.27) - (38.4 ± 1.0)/2.303 RT at <T> = 800 K. No evidence for the competition of the higher energy homolytic bond-fission process could be obtained from the experimental data. The rate constant compatible with the C? O bond scission reaction in the case of benzylvinylether was log k (sec?1) = (16.63 ± 0.30) - (53.74 ± 1.0)/2.303 RT at <T> = 750 K. Together with ΔHf,3000(benzyl·) = 47.0 kcal/mol, the activation energy for this reaction results in ΔHf,3000(CH2CHO) = +3.0 ± 2.0 kcal/mol and a corresponding resonance stabilization energy of 3.2 ± 2.0 kcal/mol for 2-ethanalyl radical.  相似文献   

15.
Pure vinylene carbonate polymerizes readily in dimethyl sulfoxide solutions upon initiation by azobisisobutyronitrile (AIBN). The monomer conversion is characterized by a limiting value which appears to be a function of the temperature and the initial concentrations of both the initiator and the monomer. Increasing both initiator concentration and temperature results in higher final conversions, whereas a maximum conversion is indicated for initial monomer concentrations in the range of 80% to 90%. Principal kinetic quantities were found to be adequately represented by the equations kd = 24.3 × 105 exp {?11300/RT} and kp(f/kt)1/2 = 46.3 × 105 exp {?8900/RT} for the temperature range of 50–80°C. The average degree of polymerization was found to be affected by chain transfer to the solvent. A value of 5.8 × 10?4 was determined for the corresponding chain transfer constant.  相似文献   

16.
The reactions of ground-state oxygen atoms with carbonothioicdichloride, carbonothioicdifluoride, and tetrafluoro-1,3-dithietane have been studied in a crossed molecular jet reactor in order to determine the initial reaction products and in a fast-flow reactor in order to determine their overall rate constants at temperatures between 250 and 500 K. These rate constants are??(O + C2CS) =(3.09 ± 0.54) × 10?11 exp(+115 ± 106 cal/mol/RT),??(O + F2CS) = (1.22 ± 0.19) × 10?11 exp(-747 ± 95 cal/mol/RT), and??(O + F4C2S2) = (2.36 ± 0.52) × 10?11 exp(-1700 ± 128 cal/mol/RT) cm3/molec˙sec. The detected reaction products and their rate constants indicate that the primary reaction mechanism is the electrophilic addition of the oxygen atom to the sulfur atom contained in the reactant molecule to form an energy-rich adduct which then decomposes by C-S bond cleavage.  相似文献   

17.
The kinetic model of induced codeposition of nickel-molybdenum alloys from ammoniun citrate solution was studied on rotating disk electrodes to predict the behavior of the electrode-position. The molybdate (MoO42-) could be firstly electro-chemically reduced to MoO2, and subsequently undergoes a chemical reduction with atomic hydrogen previously adsorbed on the inducing metal nickel to form molybdenum in alloys. The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The electrochemical rate constants for discharge of nickel, molybdenum and water could been expressed as k1(E) = 1. 23 × 109 CNi exp( - 0.198FE/RT) mol/(dm2·s), k2(E) =3.28× 10-10 CMoexp( - 0. 208FE/ RT) mol/(dm2·s) and k3(E) = 1.27 × 10-6exp( - 0.062FE/ RT) mol/(dm2 · s), where CNi and CMo are the concentrations of the nickel ion and molybdate, respectively, and E is the applied potential vs. saturated calomel electrode (SCE). The codeposition p  相似文献   

18.
The thermal decomposition of CCl3O2NO2,CCl2FO2NO2, and CClF2O2NO2 was studied in a temperature-controlled 420 l reaction chamber using in situ detection of peroxynitrates by long-path IR absorption. The temperature dependence of the unimolecular dissociation rate constants was determined at total pressures of 10 and 800 mbar in nitrogen as buffer gas, and the pressure dependence was measured at 273 K between 10 and 800 mbar. In Troe's notation, the data are represented by the following values for the limiting low and high pressure rate constants k0/[N2] and k and the fall-off curvature parameter Fc (in units of cm3 molecule?1 s?1, s?1): CCl3O2NO2,k0/[N2] = 6.3 × 10?3 exp(?85.1 kJ · mol?1/RT), k = 4.8 × 1016 exp(?98.3 kJ · mol?1/RT), Fc = 0.22; CCl2FO2NO2, k0/[N2] = 1.01× 10?2 exp(?90.3 kJ · mol?1/RT), k = 6.6 × 1016 exp(?101.8 kJ · mol?1/RT), Fc = 0.28; and CClF2O2NO2, k0/[N2] = 1.80 × 10?3 exp(?87.3 kJ · mol?1/RT), k = 1.60 × 1016exp(?99.7 kJ · mol?1/RT), Fc = 0.30. From these dissociation rate constants and recently measured rate constants for the reverse reaction (see Caralp, Lesclaux, Rayez, Rayez, and Forst [19]), bond energies (=ΔH) of 100, 103, and 104 kJ/mol were derived for the RO2–NO2 bonds in CCl3O2NO2, CCl2FO2NO2, and CClF2O2NO2, respectively. The kinetic and thermochemical parameters of these decomposition reactions are compared with those of the dissociation of other peroxynitrates. Atmospheric implications of the thermal stability of chlorofluoromethyl peroxynitrates are briefly discussed.  相似文献   

19.
By allowing dimethyl peroxide (10?4M) to decompose in the presence of nitric oxide (4.5 × 10?5M), nitrogen dioxide (6.5 × 10?5M) and carbon tetrafluoride (500 Torr), it has been shown that the ratio k2/k2′ = 2.03 ± 0.47: CH3O + NO → CH3ONO (reaction 2) and CH3O + NO2 → CH3ONO2 (reaction 2′). Deviations from this value in this and previous work is ascribed to the pressure dependence of both these reactions and heterogeneity in reaction (2). In contrast no heterogeneous effects were found for reaction (2′) making it an ideal reference reaction for studying other reactions of the methoxy radical. We conclude that the ratio k2/k2′ is independent of temperature and from k1 = 1010.2±0.4M?1 sec?1 we calculate that k2′ = 109.9±0.4M?1 sec?1. Both k2 and k2′ are pressure dependent but have reached their limiting high-pressure values in the presence of 500 Torr of carbon tetrafluoride. Preliminary results show that k4 = 10.9.0±0.6 10?4.5±1.1M?1 sec?1 (Θ = 2.303RT kcal mole?1) and by k4 = 108.6±0.6 10?2.4±1.1M?1 sec?1: CH3O + O2 → CH2O + HO2 (reaction 4) and CH3O + t-BuH → CH3OH + (t-Bu) (reaction 4′).  相似文献   

20.
The kinetics of dehydration and decarboxylation as well as the glass transition temperature as a function of anhydride content were measured for poly(acry1ic acid). It was found that the glass transition of PAA is of the order of 103°C and increases with increasing anhydride content, reaching an extrapolated value of 140°C for the pure linear anhydride. Anhydride formation is a firstsrder reaction, as is also decarboxylation, the latter being much slower than the former. The rate constants are for dehydration, ka = 2.5 × 109 exp {?26000/RT}; for decarboxylation, kd = 2.9 × 108 exp {?27000/RT}. Anhydride formation occurs primarily by an intramolecular process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号