首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The thermal decomposition of cyclobutyl chloride has been investigated over the temperature range of 892–1150 K using the technique of very low-pressure pyrolysis (VLPP). The reaction proceeds via two competitive unimolecular channels, one to yield ethylene and vinyl chloride and the other to yield 1,3-butadiene and hydrogen chloride, with the latter being the major reaction under the experimental conditions. With the usual assumption that gas-wall collisions are «strong,» RRKM calculations, generalized to take into account two competing pathways, show that the experimental unimolecular rate constants are consistent with the high-pressure Arrhenius parameters given by log k1(sec?1) = (14.8 ± 0.3) ? (61.1 ± 1.0)/Θ for vinyl chloride formation and log k2(sec?1) = (13.6 ± 0.3) ? (55.7 ± 1.0)/Θ for 1,3-butadiene formation, where Θ = 2.303 RT kcal/mol. The A factors were assigned from previous high-pressure low-temperature data of other workers assuming a four-center transition state for 1,2-HCl elimination and a chlorine-bridged biradical transition state for vinyl chloride formation. The activation energies are in good agreement with the high-pressure results which were obtained with a conventional static system. The difference in critical energies is 4.6 kcal/mol.  相似文献   

2.
The gas-phase thermal isomerization of N-propylidenecyclopropylamine has been studied in the temerature range of 573° to 635°K. The reaction is homogeneous and kinetically first order and yields 5-ethyl-1-pyrroline as the sole product. The rate constants are independent of pressure in the range of 2.5 to 55 torr and fit the Arrhenius relationship log k(sec?1) = (14.05 ± 0.06) - (47.77 ± 0.16)/θ where θ = 2.303 RT in units of kcal/mole, or log k(sec?1) = (14.05 ± 0.06) - (199.9 ± 0.7)/θ, where θ = 2.303RT in kJ/mole. From considerations of a biradical pathway it is concluded that the resonance stabilization energy of the substituted 2-aza-allyl radical is very similar to that of the methallyl radical.  相似文献   

3.
4.
The kinetics of the gas-phase elimination of several chloroesters were determined in a static system over the temperature range of 410–490°C and the pressure range of 47–236 torr. The reactions in seasoned vessels, and in the presence of a free-radical inhibitor, are homogeneous, unimolecular, and follow a first-order law. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for methyl 3-chloropropionate, log k1(s?1) = (13.22 ± 0.07) - (231.5 ± 1.0) kJ/mol/2.303RT; for methyl 4-chlorobutyrate, log k1(s?1) = (13.31 ± 0.25) - (221.5 ± 3.4) kJ/mol/2.303RT; and for methyl 5-chlorovalerate, log k1(s?1) = (13.12 ± 0.25) - (221.7 ± 3.2) kJ/mol/2.303RT. Rate enhancements and lactone formation reveal the participation of carbonyl oxygen of the carbomethoxy group. The order COOCH3-5 > COOCH3-6 > COOCH3-4 in assistance is similar to the sequence of group participation in solvolysis reactions. The partial rates for the parallel eliminations to normal dehydrohalogenation products and lactones have been estimated and reported. The present results lead us to consider that an intimate ion-pair mechanism through participation of the carbomethoxy group may well be operating in some of these reactions.  相似文献   

5.
The pyrolysis kinetics of several ethyl esters with polar substituents at the acyl carbon have been studied in the temperature range of 319.8–400.0°C and pressure range of 50.5–178.0 torr. These eliminations are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are given by the Arrhenius equations: for ethyl glycolate, log k1 (s?1) = (12.75 ± 0.30) – (201.4 ± 3.8) kJ/mol/2.303RT; for ethyl cyanoacetate, log k1 (s?1) = (12.19 ± 0.18) – (191.8 ± 2.1) kJ/mol/2.303RT; for ethyl dichloroacetate, log k1 (s?1) = (12.62 ± 0.36) – (193.9 ± 4.3) kJ/mol/2.303RT; for ethyl trichloroacetate, log k1 (s?1) = (12.27 ± 0.09) – (185.1 ± 1.0) kJ/mol/2.303RT. The results of the present work together with those reported recently in the literature give an approximate linear correlation when plotting log k/k0 vs. σ* values (ρ* = 0.315 ± 0.004, r = 0.976, and intercept = 0.032 ± 0.006 at 400°C). This linear relationship indicates that the polar substituents affect the rate of elimination by electronic factors. The greater the electronegative nature of the polar substituent, the faster is the pyrolysis rate. The alkyl substituents yield, within experimental error, similar values in rates which makes difficult an adequate assessment of their real influence.  相似文献   

6.
The gas-phase elimination of several polar substituents at the α carbon of ethyl acetates has been studied in a static system over the temperature range of 310–410°C and the pressure range of 39–313 torr. These reactions are homogeneous in both clean and seasoned vessels, follow a first-order rate law, and are unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: 2-acetoxypropionitrile, log k1 (s?1) = (12.88 ± 0.29) – (203.3 ± 2.6) kJ/mol (2.303RT)?1; for 3-acetoxy-2-butanone, log ±1(s?1) = (13.40 ± 0.20) – (202.8 ± 2.4) kJ/mol (2.303RT)?1; for 1,1,1-trichloro-2-acetoxypropane, log ?1 (s?1) = (12.12 ± 0.50) – (193.7 ± 6.0) kJ/mol (2.303RT)?; for methyl 2-acetoxypropionate, log ?1 (s?1) = (13.45 ± 0.05) – (209.5 ± 0.5) kJ/mol (2.303RT)?1; for 1-chloro-2-acetoxypropane, log ?1 (s?1) = (12.95 ± 0.15) – (197.5 ± 1.8) kJ/mol (2.303RT)?1; for 1-fluoro-2-acetoxypropane, log ?1 (s?1) = (12.83 ± 0.15)– (197.8 ± 1.8) kJ/mol (2.303RT)?1; for 1-dimethylamino-2-acetoxypropane, log ?1 (s?1) = (12.66 ± 0.22) –(185.9 ± 2.5) kJ/mol (2.303RT)?1; for 1-phenyl-2-acetoxypropane, log ?1 (s?1) = (12.53 ± 0.20) – (180.1 ± 2.3) kJ/mol (2.303RT)?1; and for 1-phenyl?3?acetoxybutane, log ?1 (s?1) = (12.33 ± 0.25) – (179.8 ± 2.9) kJ/mol (2.303RT)?1. The Cα? O bond polarization appears to be the rate-determining process in the transmition state of these pyrolysis reactions. Linear correlations of electron-releasing and electron-withdrawing groups along strong σ bonds have been projected and discussed. The present work may provide a general view on the effect of alkyl and polar substituents at the Cα? O bond in the gas-phase elimination of secondary acetates.  相似文献   

7.
The thermal unimolecular decomposition of hex-1-ene has been investigated over the temperature range of 915–1153 K using the technique of very low-pressure pyrolysis (VLPP). The reaction proceeds via the competitive pathways of C3?C4 fission and retro-ene elimination, with the latter dominant at low temperatures and the former at high temperatures. This behavior results in an isokinetic temperature of 1035 K under VLPP conditions (both reactions in the unimolecular falloff regime). RRKM calculations, generalized to take into account two competing pathways, show that the experimental unimolecular rate constants are consistent with the high-pressure Arrhenius parameters given by log k1 (sec?1) = (12.6 ± 0.2) -(57.7 ± 1.5)/θ for retro-ene reaction, and log k2 (sec?1) = (15.9 ± 0.2) - (70.8 ± 1.0)/θ for C-C fission, where θ = 2.303 RT kcal/mol. The A factors were assigned from the results of a recent shock-tube study of the decomposition in the high-pressure regime, and the activation energies were found by matching the RRKM calculations to the VLPP data. The parameters for C-C fission are consistent with the known thermochemistry of n-propyl and allyl radicals. A clear measure of the importance of the molecular pathway in the decomposition of a mono-olefin has been obtained.  相似文献   

8.
The unimolecular decomposition of 3,3-dimethylbut-1-yne has been investigated over the temperature range of 933°-1182°K using the technique of very low-pressure pyrolysis (VLPP). The primary process is C? C bond fission yielding the resonance stabilized dimethylpropargyl radical. Application of RRKM theory shows that the experimental unimolecular rate constants are consistent with the high-pressure Arrhenius parameters given by log (k/sec?1) = (15.8 ± 0.3) - (70.8 ± 1.5)/θ where θ = 2.303RT kcal/mol. The activation energy leads to DH0[(CH3)2C(CCH)? CH3] = 70.7 ± 1.5, θH0f((CH3)2?CCH,g) = 61.5 ± 2.0, and DH0[(CH3)2C(CCH)? H] = 81.0 ± 2.3, all in kcal/mol at 298°K. The stabilization energy of the dimethylpropargyl radical has been found to be 11.0±2.5 kcal/mol.  相似文献   

9.
The gas-phase elimination of ethyl 3-methylbutanoate and ethyl 3,3-dimethylbutanoate has been studied, in a static system, over the temperature range of 360–420°C and in the pressure range of 71–286 torr. The reactions are homogeneous, unimolecular, and follow a first-order rate law. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for ethyl 3-methylbutanoate, log k1 (s?1) = (12.70 ± 0.36) – (202.5 ± 4.4) kJ/mol/2.303RT, and for ethyl 3,3-dimethylbutanoate, log k1 (s?1) = (13.04 ± 0.08) – (207.1 ± 1.0) kJ/mol/2.303RT. Alkyl substituents at the acyl carbon of ethyl esters yield very close values in rates. Consequently it is rather difficult to offer some conclusion concerning the effect of these substituents.  相似文献   

10.
The rate coefficients for the gas-phase pyrolyses of a series of structurally related secondary acetates have been measured in a static system over the temperature range of 289.1–359.5°C and the pressure range 50.0–203.0 torr. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for 3-hexyl acetate, log k1 (s?) = (12.12 ± 0.33) ? (176.1 ± 3.9)kJ/mol/2.203RT; for 5-methyl-3-hexyl acetate, log k1 (s?) = (13.17 ± 0.20) ? (186.2 ± 2.3)kJ/mol/2.303RT; and for 5,5-dimethyl-3-hexyl acetate, log k1 (s?) = (12.70 ± 0.19) ? (177.4 ± 2.2)kJ/mol/2.303RT. The direction of elimination of these esters has shown from the invariability of olefin distributions at different temperatures and percentages of decomposition that steric hindrance is a determining factor in the eclipsed cis conformation. Moreover, a more detailed analysis indicates that the greater the alkyl–alkyl interaction, the less favored the elimination tends to be. Otherwise, an increase of alkyl–hydrogen interaction caused steric acceleration to be the determining factor.  相似文献   

11.
The pyrolysis kinetics of primary, secondary, and tertiary β-hydroxy ketones have been studied in static seasoned vessels over the pressure range of 21–152 torr and the temperature range of 190°–260°C. These eliminations are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are expressed by the following equations: for 1-hydroxy-3-butanone, log k1(s?1) = (12.18 ± 0.39) ? (150.0 ± 3.9) kJ mol?1 (2.303RT)?1; for 4-hydroxy-2-pentanone, log k1(s?1) = (11.64 ± 0.28) ? (142.1 ± 2.7) kJ mol?1 (2.303RT)?1; and for 4-hydroxy-4-methyl-2-pentanone, log k1(s?1) = (11.36 ± 0.52) ? (133.4 ± 4.9) kJ mol?1 (2.303RT)?1. The acid nature of the hydroxyl hydrogen is not determinant in rate enhancement, but important in assistance during elimination. However, methyl substitution at the hydroxyl carbon causes a small but significant increase in rates and, thus, appears to be the limiting factor in a retroaldol type of mechanism in these decompositions. © John Wiley & Sons, Inc.  相似文献   

12.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

13.
The spectrophotometric determination of the rate of pyrolysis of 1,2-diiodoethylene from 305.8 to 435.0° (with additional data on the addition of iodine to acetylene from 198.1 to 331.6°) has resulted in the observation of both a (in part heterogeneous) unimolecular process (A), and an iodine atom catalyzed process (B). For the homogeneous unimolecular process, log (kA/sec?1) ≈ 12.5–46/θ would appear to be reasonable, while log (kB/M?1 sec?1) = 11.8–23.9/θ, where θ = 2.303RT in kcal/mole. It is suggested that a donor–acceptor complex intermediate may explain the observed rate constant of process B and analogous reactions in other systems.  相似文献   

14.
The kinetics and mechanism of the reaction between iodine and dimethyl ether (DME) have been studied spectrophotometrically from 515–630°K over the pressure ranges, I2 3.8–18.9 torr and DME 39.6–592 torr in a static system. The rate-determining step is, where k1 is given by log (k1/M?1 sec?1) = 11.5 ± 0.3 – 23.2 ± 0.7/θ, with θ = 2.303RT in kcal/mole. The ratio k2/k?1, is given by log (k2/k?1) = ?0.05 ± 0.19 + (0.9 ± 0.45)/θ, whence the carbon-hydrogen bond dissociation energy, DH° (H? CH2OCH3) = 93.3 ± 1 kcal/mole. From this, ΔH°f(CH2OCH3) = ?2.8 kcal and DH°(CH3? OCH2) = 9.1 kcal/mole. Some nmr and uv spectral features of iodomethyl ether are reported.  相似文献   

15.
The kinetics and equilibrium of the gas-phase reaction of CH3CF2Br with I2 were studied spectrophotometrically from 581 to 662°K and determined to be consistent with the following mechanism: A least squares analysis of the kinetic data taken in the initial stages of reaction resulted in log k1 (M?1 · sec?1) = (11.0 ± 0.3) - (27.7 ± 0.8)/θ where θ = 2.303 RT kcal/mol. The error represents one standard deviation. The equilibrium data were subjected to a “third-law” analysis using entropies and heat capacities estimated from group additivity to derive ΔHr° (623°K) = 10.3 ± 0.2 kcal/mol and ΔHrr (298°K) = 10.2 ± 0.2 kcal/mol. The enthalpy change at 298°K was combined with relevant bond dissociation energies to yield DH°(CH3CF2 - Br) = 68.6 ± 1 kcal/mol which is in excellent agreement with the kinetic data assuming that E2 = 0 ± 1 kcal/mol, namely; DH°(CH3CF2 - Br) = 68.6 ± 1.3 kcal/mol. These data also lead to ΔHf°(CH3CF2Br, g, 298°K) = -119.7 ± 1.5 kcal/mol.  相似文献   

16.
The metathesis reaction of DI with t-C4H9 generated by 351-nm photolysis of 2,2′-azoisopropane was studied in a low-pressure reactor (VLP? Knudsen cell) in the temperature range of 302–411 K. The data obeyed the following Arrhenius relation when combined with recent data by Rossi and Golden gathered by the same technique (t-C4H9 by thermal decomposition of 2,2′-azoisobutane): log k2D(M?1s?1) = 9.60 – 1.90/θ, where θ = 2.303RT kcal/mol for 302 K < T > 722 K. The metathesis reaction of HI with t-C4H9 was studied at 301 K and resulted in k2H(M?1·s?1) = (3.20 ± 0.62) × 108. An analogous Arrhenius relation was calculated for the protiated system if the small primary isotope effect k2H/k2D was assumed to be √2 at 700 K. It was of the following form: log k2H(M?1·s?1) = 9.73 – 1.68/θ. Preliminary data of Bracey and Walsh indicate that earlier Arrhenius parameters determined for the reverse reaction are somewhat in error. Their value of log k1(M?1·s?1) = 11.5 – 23.8/θ yields 7delta;Hf,3000(t-butyl) = 9.2 kcal/mol and S3000(t-butyl) = 74.2 cal/mol7°K when taken in conjuction with this study.  相似文献   

17.
The elimination kinetics of the title compounds were carried out in a static system over the temperature range of 290–330°C and pressure range of 29.5–124 torr. The reactions, carried out in seasoned vessels with allyl bromide, obey first-order rate law, are homogeneous and unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for 3-buten-1-methanesulphonate, log k1(s?1) = (12.95 ± 0.53) ? (175.3 ± 5.9)kJ mol?1(2.303RT)?1; and for 3-methyl-3-buten-1-methanesulphonate, log k1(s?1) = (12.98 ± 0.40) ? (174.7 ± 4.5)kJ mol?1(2.303RT)?1. The olefinic double bond appears to assist in the rate of pyrolysis. The mechanism is described in terms of an intimate ion-pair intermediate. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
4-Chloro-1-butene, 5-chloro-1-pentene, and 6-chloro-1-hexene have been shown to decompose, in a static system, mainly to hydrogen chloride and the corresponding alkadienes. In packed and unpacked clean Pyrex vessels the reactions were significantly heterogeneous. However, in a vessel seasoned with allyl bromide these reactions were homogeneous, unimolecular, and follow a first-order law. The working temperature range was 389.6–480.0°C and with a pressure range of 53–221 Torr. The rate constants for the homogeneous reactions were expressed by the following Arrhenius equations: 4-chloro-1-butene: logk(sec?1) = (13.79 ± 0.17) – (223.8 ± 2.1)kJ/mole/2.303RT; 5-chloro-1-pentene: logk(sec?1) = (14.25 ± 1.20) – (238.4 ± 12.7)kJ/mole/2.303RT; and 6-chloro-1-hexene: logk(sec?1) = (12.38 ± 0.22) – (209.6 ± 2.9)kJ/mole/2.303RT. The olefinic double bond has been found to participate in the rate of dehydrohalogenation of 4-chloro-1-butene. The insulation of the CH2?CH in chlorobutene by one or two methylene chains to the reaction center does not indicate neighboring group participation. The three-membered conformation is the most favored structure for anchimeric assistance of the double bond in gas phase pyrolysis of alkenyl chlorides. The heterolytic nature of these eliminations is also supported by the present work.  相似文献   

19.
The rates of elimination of 5-chloropentan-2-one and 4-chloro-1-phenylbutan-1-one in the gas phase have been determined in a static system, seasoned with allyl bromide, and in the presence of the chain inhibitor propene. The reactions are unimolecular and follow a first-order rate law. The working temperature and pressure ranges were 339.4–401.1°C and 46–117 torr, respectively. The rate coefficients for the homogeneous reactions are given by the following Arrhenius equations: for 5-chloropentan-2-one, log k1(s?1) = (13.12 ± 0.88) - (207.8 ± 11.0)kJ/mol/2.303RT; and for 4-chloro-1-phenylbutan-1-one, log k1(s?1) = (12.28 ± 1.09) - (185.2 ± 12.0)kJ/mol/2.303RT. The carbonyl group at the γ position of the C? Cl bond of haloketones apparently participates in the rate of pyrolysis. The five-membered conformation appears to be a favorable structure for anchimeric assistance of the C?O group in the gas-phase elimination of chloroketones.  相似文献   

20.
The kinetics of the gas-phase thermal iodination of hydrogen sulfide by I2 to yield HSI and HI has been investigated in the temperature range 555–595 K. The reaction was found to proceed through an I atom and radical chain mechanism. Analysis of the kinetic data yields log k (l/mol·sec) = (11.1 ± 0.18) – (20.5 ± 0.44)/θ, where θ = 2.303 RT, in kcal/mol. Combining this result with the assumption E?1 = 1 ± 1 kcal/mol and known values for the heat of formation of H2S, I2, and HI, ΔHf,2980(SH) = 33.6 ± 1.1 kcal/mol is obtained. Then one can calculate the dissociation energy of the HS? H bond as 90.5 ± 1.1 kcal/mol with the well-known values for ΔHf,2980 of H and H2S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号