首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Thin films of Ag2Cu2O3 were formed on glass substrates by RF magnetron sputtering technique under different oxygen partial pressures in the range 5 × 10‐3 – 8 × 10‐2 Pa using mosaic target of Ag70Cu30. The influence of oxygen partial pressure on the core level binding energies, crystallographic structure, and electrical and optical properties of the deposited films was studied. The atomic ratio of copper to silver in the films was 0.302. The oxygen content was in correlation with the oxygen partial pressure maintained during the growth of the films. The films formed at oxygen partial pressures < 2 × 10‐2 Pa was mixed phase of Ag2Cu2O3 and Ag. The films deposited at 2 × 10‐2 Pa were single phase of Ag2Cu2O3. The crystallite size of the films formed at 2 × 10‐2 Pa was 12 nm, while those films annealed at 473 K was 16 nm. The nanocrystalline Ag2Cu2O3 films formed at oxygen partial pressure of 2 × 10‐2 Pa showed electrical resistivity of 8.2 Ωcm and optical band gap of 1.95 eV. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
在不同氧气流量下,采用双靶射频磁控共溅射的方法在蓝宝石(α-Al2O3)基底上制备得到系列掺Cr的Ga2O3(Ga2O3∶Cr)薄膜,详细研究了薄膜在900 ℃退火前后的结构和光学性能。结果表明,未退火的Ga2O3∶Cr薄膜为非晶结构,其发光主要位于蓝绿波段。经900 ℃退火后,薄膜的结构由非晶变为多晶,且在近红外波段观测到了来源于Cr3+掺杂的发光。退火后的薄膜结晶质量和近红外发光均与氧气流量密切相关,而其光学带隙不受氧气流量的影响。在所研究的氧气流量范围,4 mL/min氧气流量下薄膜的近红外发光强度最强,这与此条件下薄膜结晶质量较好以及Cr3+替代Ga3+的数量较多有关。以上研究成果可为制备高质量Ga2O3∶Cr薄膜提供参考。  相似文献   

3.
This study deals with the role of the different substrates on the microstructural, optical and electronical properties of TiO2 thin films produced by conventional direct current (DC) magnetron sputtering in a mixture of pure argon and oxygen using a Ti metal target with the aid of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis) and atomic force microscopy (AFM) measurements. Transparent TiO2 thin films are deposited on Soda lime glass, MgO(100), quartz and sitall substrates. Phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. It is found that the amplitude of interference oscillation of the films is in a range of 77‐89%. The transmittance of the film deposited on Soda lime glass is the smallest while the film produced on MgO(100) substrate obtains the maximum transmittance value. The refractive index and optical band gap of the TiO2 thin films are also inferred from the transmittance spectra. The results show that the film deposited on Soda lime glass has the better optical property while the film produced on MgO(100) substrate exhibits much better photoactivity than the other films because of the large optical energy band gap. As for the XRD results, the film prepared on MgO(100) substrate contains the anatase phase only; on the other hand, the other films contain both anatase and rutile phases. Furthermore, AFM images show that the regular structures are observed on the surface of all the films studied. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Sb2S3 thin films are obtained by evaporating of Sb2S3 powder onto glass substrates maintained at room temperature under pressure of 2×10‐5 torr. The composition of the thin films was determined by energy dispersive analysis of X‐ray (EDAX). The effect of thermal annealing in vacuum on the structural properties was studied using X‐ray diffraction (XRD) technique and scanning electron microscopy (SEM). The as‐deposition films were amorphous, while the annealed films have an orthorhombic polycrystalline structure. The optical constants of as‐deposited and annealed Sb2S3 thin films were obtained from the analysis of the experimental recorded transmission spectral data over the wavelength range 400‐1400 nm. The transmittance analysis allowed the determination of refractive index as function of wavelength. It was found that the refractive dispersion data obeyed the single oscillator model, from which the dispersion parameters (oscillator energy, E0, dispersion energy, Ed) were determined. The static refractive index n(0), static dielectric constant, ε, and optical band gap energy, Eg, were also calculated using the values of dispersion parameters. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Thin films of Sb2Te2Se were prepared by conventional thermal evaporation of the presynthesized material on Corning glass substrates. The chemical composition of the samples was determined by means of energy‐dispersive X‐ray spectrometry. X‐ray diffraction studies on the as‐deposited and annealed films revealed an amorphous‐to‐crystalline phase transition. The as‐deposited and annealed films at T a = 323 and 373 K are amorphous, while those annealed at T a= 423 and 473 K are crystalline with a single‐phase of a rhombohedral crystalline structure as that of the source material. The unit‐cell lattice parameters were determined and compared with the reported data. The optical constants (n , k ) of the investigated films were determined from the transmittance and reflectance data at normal incidence in the spectral range 400–2500 nm. The analysis of the absorption spectra revealed non‐direct energy gaps, characterizing the amorphous films, while the crystalline films exhibited direct energy gaps. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Titanium dioxide films have been deposited using DC magnetron sputtering technique. Films were deposited onto RCA cleaned p‐silicon substrates at the ambient temperature at an oxygen partial pressure of 7 × 10–5 mbar and sputtering pressure of 1 × 10 –3 mbar. The deposited films were annealed in the temperature range 673–873 K. The structure and composition of the films were confirmed using X‐ray diffraction and Auger electron spectroscopy. The structure of the films deposited at the ambient was found to be amorphous and the films annealed at 673 K and above were crystalline with anatase structure. The lattice constants, grain size, microstrain and the dislocation density of the film are calculated and correlated with annealing temperature.  相似文献   

7.
Titanium dioxide (TiO2) thin film was deposited on n‐Si (100) substrate by reactive DC magnetron sputtering system at 250 °C temperature. The deposited film was thermally treated for 3 h in the range of 400‐1000 °C by conventional thermal annealing (CTA) in air atmosphere. The effects of the annealing temperature on the structural and morphological properties of the films were investigated by X‐ray diffraction (XRD) and atomic force microscopy (AFM), respectively. XRD measurements show that the rutile phase is the dominant crystalline phase for the film annealed at 800 °C. According to AFM results, the increased grain sizes indicate that the annealing improves the crystalline quality of the TiO2 film. In addition, the formation of the interfacial SiO2 layer between TiO2 film and Si substrate was evaluated by the transmittance spectra obtained with FTIR spectrometer. The electronic band transitions of as‐deposited and annealed films were also studied by using photoluminescence (PL) spectroscopy at room temperature. The results show that the dislocation density and microstrain in the film were decreased by increasing annealing temperature for both anatase and rutile phases. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Nano‐crystalline silver oxide films were deposited on glass and silicon substrates held at room temperature by RF magnetron sputtering of silver target under different oxygen partial pressures. The influence of oxygen partial pressure on the structural, morphological, electrical and optical properties of deposited films was investigated. Varying oxygen partial pressure during the sputter deposition leads to changes of mixed phase of Ag2O and Ag to a single phase of Ag2O and to AgO. The X‐ray diffraction and X‐ray photoelectron spectroscopy results showed the formation of single phase Ag2O with cubic structure at oxygen partial pressures of 2x10‐2 Pa while the films deposited at higher oxygen partial pressure of 9x10‐2 Pa showed the formation of single phase of AgO with monoclinic structure. Raman spectroscopic studies on the single phase Ag2O showed the stretching vibration of Ag‐O bonds. Single‐phase Ag2O films obtained at oxygen partial pressure of 2x10‐2 Pa were nano‐crystalline with crystallite size of 20 nm and possessed an electrical resistivity of 5.2x10‐3 Ωcm and optical band gap of 2.05 eV. The films deposited at higher oxygen partial pressure of 9x10‐2 Pa were of AgO with electrical resistivity of 1.8x10‐2 Ωcm and optical band gap of 2.13 eV. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Thin films of antimony trisulfide (Sb2S3) were prepared by thermal evaporation under vacuum (p=5×10–5 torr) on glass substrates maintained at various temperatures between 293 K and 523 K. Their microstructural properties have obtained by transmission electron microscopy (TEM). The electron diffraction analysis showed the occurrence of amorphous to polycrystalline transition in the films deposited at higher temperature of substrates (523 K). The polycrystalline thin films were found to have an orthorhombic structure. The interplanar distances and unit‐cell parameters were determined by high‐resolution transmission electron microscopy (HRTEM) and compared with the standard values for Sb2S3. The surface morphology of Sb2S3 thin films was investigated by scanning electron microscopy (SEM). The optical transmission spectra at normal incidence of Sb2S3 thin films have been measured in the spectral range of 400–1400 nm. The analysis of the absorption spectra revealed indirect energy gaps, characterizing of amorphous films, while the polycrystalline films exhibited direct energy gap. From the photon energy dependence of absorption coefficient, the optical band gap energy, Eg, were calculated for each thin films. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this study, large‐area and uniform thickness novel nano‐sheet structured CuS thin films on ITO glass have been prepared by the one‐step electrodeposition method from a dimethyl sulfoxide solution. Thin films of completely preserved nano‐sheet like morphology of CuyS (y = 1.75, 1.8, 1.95, and 2.0) are grown by vacuum annealing CuS thin films at 500 °C for different lengths of time. The 500 °C sample heated for 10 hours was nearly converted to single phase of Cu2S with y ∼ 2. The optical direct band gaps of nano‐sheet CuyS thin films annealed at 500 °C of 2, 6, and 10 hours in vacuum were found to be 1.94, 1.68, and 1.44 eV, respectively.  相似文献   

11.
Y.A. El-Gendy  G.B. Sakr 《Journal of Non》2011,357(16-17):3226-3229
Ga5Ge15Te80 thin films have been deposited by e-beam evaporation method. The chemical composition of the deposited films was identified using energy dispersive X-ray spectrometry. The electrical conductivity, σ of the deposited films during heating/cooling cycles was investigated in the temperatures 298–570 K. The conductivity curve showed two sudden upward trends during the first heating cycle. The first upward trend occurs in the temperature range 408–430 K and was attributed to the amorphous-to-crystalline phase transformation. While the second is in the temperature range 470–495 K, and can be attributed to the crystallization process. However, for second heating cycle the conductivity curve becomes reversible. The optical band gap of the as-deposited and annealed film at annealing temperature 423 K was determined from the recorded transmittance and reflectance spectra. The obtained results were confirmed throughout the X-ray and transmission electron microscope studies.  相似文献   

12.
Tin oxide (SnO2) thin films were deposited on UV fused silica (UVFS) substrates using filtered vacuum arc deposition (FVAD). During deposition, the substrates were at room temperature (RT). As-deposited films were annealed at 400 and 600 °C in Ar for 30 min. The film structure, composition, and surface morphology were determined as function of the annealing temperature using X-ray diffraction (XRD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns of the SnO2 thin films deposited on substrates at RT indicated that the films were amorphous, however, after the annealing the film structure became polycrystalline. The grain size of the annealed films, obtained from the XRD analysis, increased with the annealing temperature, and it was in the range 8-34 nm. The AFM analysis of the surface revealed an increase in the film surface average grain size from 15 nm to 46 nm, and the surface roughness from 0.2 to 1.8 nm, as function of the annealing temperature. The average optical transmission of the films in the visible spectrum was >80%, and increased by the annealing ∼10%. The films’ optical constants in the 250-989 nm wavelength range were determined by variable angle spectroscopic ellipsometry (VASE). The refractive indexes of as-deposited and annealed films were in the range 1.83-2.23 and 1.85-2.3, respectively. The extinction coefficients, k(λ), of as-deposited and annealed films were in the range same range ∼0-0.5. The optical energy band gap (Eg), as determined by the dependence of the absorption coefficient on the photon energy at short wavelengths, increased with the annealing temperature from 3.90 to 4.35 eV. The lowest electrical resistivity of the as-deposited tin oxide films was 7.8 × 10−3 Ω cm, however, film annealing resulted in highly resistive films.  相似文献   

13.
《Journal of Crystal Growth》2006,286(2):223-227
We have studied structural, optical, electrical, and magnetic properties of Zn0.93Mn0.07O thin films grown by RF magnetron sputtering under ambient gas mixtures of O2 and Ar. As the oxygen partial pressure increases, the electron concentration systematically decreases and photoluminescence peaks related to oxygen vacancies gradually diminish. These results suggest that oxygen vacancies are majority donors. Smooth surface morphology and electron concentration as low as ∼1015 cm−3 are obtained simultaneously for the film grown in an optimal oxygen partial pressure. This film exhibits ferromagnetism with the Curie temperature of 78 K, while other films grown in higher or lower oxygen partial pressure show paramagnetic behavior down to low temperature. The disappearance of the ferromagnetism can be explained in terms of crystalline quality and surface smoothness rather than electron concentration.  相似文献   

14.
采用射频磁控溅射TiO2陶瓷靶的方法在硅和石英衬底上制备纳米TiO2薄膜,并经950℃退火1h.通过X射线衍射(XRD)、原子力显微镜(AFM)、紫外可见光谱(UV-Vis)和接触角仪对薄膜相结构、表面形貌、光学性能和亲水性能进行表征.结果表明,与950℃退火1h相比,未退火薄膜是无定形结构并呈现较高的光致亲水性能.退火薄膜是锐钛矿和金红石混合相,其中锐钛矿相质量分数是11.34%.未退火和950℃退火1h的薄膜样品的能隙分别是3.03 eV和3.11 eV.未退火薄膜具有较高的光致亲水性能主要归因于其较低的光学能隙.退火薄膜的热致亲水性能与其相结构、表面清洁度和粗糙度有关.  相似文献   

15.
Zn(O,S) films were fabricated by oxidizing ZnS thin films deposited by electron beam evaporation method onto glass substrates at temperatures of 350–500℃ for 2 h in an atmosphere of oxygen. The XRD and EDX confirmed that the Zn(O,S) films were obtained successfully. The influence of the oxidization temperature on the optical and electrical properties of the Zn(O,S) thin films was investigated. The experimental results show that the Zn(O,S) thin film oxidized at the temperature of 400℃ exhibits better properties than others, with the transmittance of 86% in the visible region, the band gap energy of 3.36 eV and the resistivity of 3.22 × 103 Ω·cm, which makes it a potential buffer layer of solar cell.  相似文献   

16.
近年来,宽禁带半导体材料β-Ga2O3越来越多地受到关注,在材料制备、掺杂、刻蚀等方面都有广泛研究。射频磁控溅射是常用的β-Ga2O3薄膜制备方法之一,后退火处理往往是提高薄膜质量的关键工艺步骤。本文研究后退火工艺中退火温度和退火气氛对射频磁控溅射在C面蓝宝石基底上制备得到的β-Ga2O3薄膜材料的影响。X射线衍射和原子力显微镜表征结果表明:在氮气气氛下退火,退火温度为1 000 ℃时得到的β-Ga2O3薄膜质量较优;相同的温度下,氧气气氛退火比氮气气氛退火更有利于提升薄膜的结晶性能、降低表面粗糙度;在氧气气氛下,1 000 ℃退火得到的薄膜质量相对比900 ℃退火得到的薄膜质量好。  相似文献   

17.
Rapid thermal processing (RTP) has developed in fabrication of ferroelectric (FE) thin films because it can reduce processing temperature and time. It also improves the properties of FE thin films compatible with semiconductor devices. The thin film samples used were prepared by a multi-ion-beam reactive cosputtering system (MIBRECS) at room temperature. The samples were then subjected to a post-deposition annealing in a RTP system. It was found that PbTiO3 (PT) thin film can grow on amorphous or polycrystalline interfacial layer and the PT thin films annealed by RTP showed the prefered [110] and [100] textures.  相似文献   

18.
In this paper, we report the effect of annealing temperature on the properties of copper indium diselenide (CuInSe2) thin films. The CuInSe2 thin films were fabricated at 500 °C for 2 h by annealing Cu‐In layers (as precursors) selenized in a glass tube with pure selenium powder. The structural and morphological properties of the CuInSe2 thin films were characterized respectively by means of x‐ray diffraction (XRD) and field‐emission scanning electron microscope (FE‐SEM). The type of CuInSe2 thin film has been identified as direct allowed and the band gap value was determined. The study of UV/Visible/NIR absorption shows that the band gap value of CuInSe2 thin film is about 1.07 eV, which is within an optimal range for harvesting solar radiation energy. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
T. Çolako?lu  S. Özder 《Journal of Non》2008,354(30):3630-3636
The optical properties of the Ag-In-Se (AIS) thin films deposited by e-beam technique were investigated by means of the optical transmittance measurements. The optical absorption coefficients of the films were found to vary from 103 to 105 cm−1 over the wavelength range of 300-1100 nm. The real and imaginary parts of the refractive index and dielectric constant for the as-grown and annealed films in between 100 and 400 °C were evaluated by means of both envelope method (EM) and continuous wavelet transform (CWT) method and the results were in quite good agreement with each other. The refractive index, n, dispersion over the measured wavelength range was explained by applying single-oscillator model (SOM) and the related parameters were calculated. The optical absorption process for the AIS thin films was characterized by three direct transitions from three closely spaced valence bands to a single conduction band due to the splitting of the valence band under the influence of the tetragonal crystalline field and spin-orbit interaction. The direct optical band gap energy decreases as the annealing temperature increases because of the increase in the width of band tail states near valence-band edge caused by the Se segregation. The two distinct parameters of the quasicubic model; crystal-field splitting, ΔCF, and spin-orbit splitting, ΔSO, were calculated for as-grown and annealed AIS thin films.  相似文献   

20.
In this paper, AgGaS2 nanofilms have been prepared by a two‐step process involving the successive ionic layer absorption and reaction (SILAR) and annealing method. Using AgNO3, GaCl3 and Na2S2O3 as reaction sources, the mixture films were firstly deposited on quartz glass substrates at room temperature, and then annealed in Ar environment at 200–500 °C for 4 h, respectively. The effects of annealing temperature on structural and optical properties were investigated by XRD, UV‐Vis, EDS and photoluminescence (PL) spectra. It was revealed in XRD results that α‐Ag9GaS6 was contained in the samples annealed at 200 °C, and this phase was decreased with increase of the annealing temperatures. When the sample was annealed at above 400 °C, the chalcopyrite AgGaS2 nanofilm was obtained. The preferred orientation was exhibited along the (112) plane. It was shown in atomic force microscopy (AFM) results that the grain sizes in AgGaS2 nanofilms were 18‐24 nm and the thin films were smooth and strongly adherent to the substrates. When the annealing temperature was higher than 400 °C, it is an optimum condition to improve the structural and optical properties of the AgGaS2 thin films. The room temperature PL spectra of AgGaS2 nanofilms showed prominent band edge emission at 2.72 eV. Based on all results mentioned above, it can be concluded that the SILAR‐annealing method is preferable to preparing high‐quality AgGaS2 nanofilms. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号