首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
采用分步电沉积方法,依次将普鲁士蓝膜(PB)和纳米铜(CuNPs)电沉积在玻碳电极(GCE)表面,制备了相应的修饰电极(CuNPs/PB/GCE)。考察了实验条件,并采用循环伏安(CV)法和差分脉冲伏安(DPV)法研究了芦丁在CuNPs/PB/GCE上的电化学行为,求解了相关的电化学参数。最佳条件下,采用DPV法,芦丁的还原峰电流与其浓度在1.0×10-8~1.0×10-4 mol/L范围内呈现良好的线性关系,其检出限(S/N=3)为2.8×10-9 mol/L。结果表明,电极表面PB和CuNPs的存在有效提高了芦丁的电化学响应。该修饰电极的选择性和重现性好,可以应用于水样中芦丁的检测。  相似文献   

2.
孙登明  刘根  罗艳  马会英 《分析试验室》2014,(11):1326-1331
将玻碳电极(GCE)放入含有L-色氨酸(TR)和氧化石墨烯(GO)底液进行循环扫描聚合,得到聚L-色氨酸(PTR)和电化学还原石墨烯(ERGO),从而制备了PTR-ERGO/GCE,电极具有较快的电子传递速率和较好的催化能力。利用循环伏安法(CV)和差分脉冲伏安法(DPV)探究尿酸(UA)和黄嘌呤(Xa)在该电极上的电化学行为。UA和Xa在电极表面的氧化过程均受吸附和扩散共同控制,以扩散为主。在最佳条件下,UA在0.626 V处产生一个氧化峰,Xa在0.994 V处产生一个氧化峰,两峰分开0.368 V,不需分离,即可同时进行测定。采用DPV法同时测定UA和Xa的线性范围分别为5.0×10-8~2.0×10-4mol/L和1.0×10-7~2.0×10-4mol/L,检出限分别为10和30 nmol/L。方法已用于人体尿样中尿酸和黄嘌呤的同时测定。  相似文献   

3.
用Nafion将单壁碳纳米管(SWCNT)固定到玻碳电极(GCE)上,再利用电化学聚合方法将L-白氨酸(L-LEU)聚合到SWCNT/GCE上,制备得到poly L-LEU/SWCNT/GCE修饰电极。采用循环伏安法(CV)、差分脉冲伏安法(DPV)和电化学交流阻抗法(EIS)研究了对苯二酚(HQ)、邻苯二酚(CC)共存时,二者在修饰电极上的电化学行为。结果表明:此修饰电极对HQ和CC有很好的电催化和分离作用。二者在修饰电极上的氧化还原峰电流与GCE相比显著增强,HQ和CC的氧化峰电位差和还原峰电位差分别为124 mV和131 mV。HQ和CC的检测线性范围分别为2.0×10-7~1.0×10-4、5.0×10-7~1.0×10-4mol/L。检出限分别为8.0×10-8、1.0×10-7mol/L。制备的修饰电极重现性、稳定性良好。在模拟废水中采用该修饰电极对HQ和CC进行检测,结果满意。  相似文献   

4.
采用晶种生长法制备了形状均一、导电性良好的三角形金纳米片(Au TNPs),并以氧化石墨烯(GO)为载体,聚阴离子Nafion为保护剂,将其修饰在玻碳电极(GCE)表面,制得氧化石墨烯/三角形金纳米片/Nafion复合膜修饰电极(GO/Au TNPs/Nafion/GCE).利用扫描电子显微镜和原子力显微镜对纳米复合材料的形貌进行表征,采用循环伏安法(CV)和示差脉冲伏安法(DPV)探讨了L-色氨酸(L-Trp)在不同修饰电极上的电化学行为.结果表明,GO/Au TNPs/Nafion/GCE对L-Trp表现出良好的电催化氧化特性.在0.10 mol/L的PBS缓冲溶液(p H=3.5)中,该修饰电极的响应峰电流与L-Trp的浓度存在良好的线性关系,线性范围为4.000×10~(-8)~6.000×10~(-5)mol/L,检出限为1.000×10~(-8)mol/L(S/N=3).该电极具有良好的重现性、稳定性和抗干扰能力.将该电极用于猪血清样品中L-Trp的测定,回收率为93.1%~105.9%,说明该电极在健康养殖生化检测领域有潜在的应用价值.  相似文献   

5.
利用循环伏安(CV)法制备L-半胱氨酸和Ni分层修饰电极,用扫描电镜和交流阻抗方法对分层修饰电极进行了表征。研究了修饰电极上黄岑苷的电化学行为,建立了差分脉冲伏安(DPV)法测定黄岑苷的新方法。结果表明,在最佳实验条件下,用DPV法测定时,峰电流与黄岑苷浓度在5.0×10-7~1.0×10-5 mol/L和1.0×10-5~1.0×10-4 mol/L范围内呈线性关系,检出限为1.0×10-7 mol/L。该方法可用于药品中黄岑苷的测定。  相似文献   

6.
通过循环伏安法(CV)将苯胺(AN)-邻氨基酚(OAP)修饰在玻碳电极(GCE)表面,制备出聚苯胺-邻氨基酚聚合物膜修饰电极(PAN-OAP/GCE),并用该电极对抗坏血酸(AA)进行测定。分别对OAP与AN聚合浓度比和磷酸缓冲溶液(PBS)pH进行优化。结果表明OAP与AN浓度比为1:14,pH为6.80时,所得聚合物膜修饰电极具有良好的电化学催化活性和稳定性。同时,在0.1 mol/L PBS(pH 6.80)中,采用差分脉冲伏安法(DPV)对AA进行测定,结果表明PAN-OAP/GCE电极对AA具有明显的电化学催化氧化作用,且AA在膜修饰电极上的响应电流和其浓度在1.50×10-8~2.12×10-6mol/L范围内呈良好的线性关系,线性回归方程为ip=1.0344c+0.0183,相关系数为0.9988。检测限可达5.0×10-9mol/L。该修饰电极具有较高的灵敏度和选择性,用于样品中AA的检测,回收率为96.0%~101.2%。  相似文献   

7.
采用循环伏安(CV)、线性扫描伏安(LSV)和示差脉冲伏安(DPV)等方法研究了8-羟基脱氧鸟苷(8-OHdG)在壳聚糖(Chi)/石墨烯(GR)修饰的玻碳电极(GCE)上的电化学行为,8-OHdG在该修饰电极上氧化峰电流与其浓度在3.5×10-7~1.4×10-4mol/L范围内呈良好的线性关系,检测限为6.4×10-8mol/L(S/N=3)。将Chi/GR/GCE用于检测DNA氧化损伤,8-OHdG在修饰电极上的氧化峰电流与损伤的DNA质量浓度在10~300 mg/L范围内呈良好的线性关系,损伤DNA检出限为0.026 mg/L(S/N=3)。  相似文献   

8.
将新型炭材料乙炔黑(AB)分散制备成AB-壳聚糖(CTS)复合膜修饰玻碳电极(GCE)。运用循环伏安法(CV)和微分脉冲伏安法(DPV)研究了着色剂日落黄在该修饰电极上的电化学行为。通过对支持电解质、修饰剂的用量、富集电位、富集时间进行优化,建立了一种快速、灵敏测定日落黄的电化学分析方法。方法的线性范围为5.0×10-8~1.0×10-5 mol/L,检出限(S/N=3)为9.0×10-9 mol/L。该修饰电极制作简单,稳定性、重现性良好,已成功应用于实际样品的检测。  相似文献   

9.
制备了纳米NiO-还原石墨烯复合修饰电极(NiO-rGO/GCE),并用于多巴胺(DA)的检测。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了DA在该修饰电极上的电化学行为。结果表明,在pH=7.0的磷酸盐缓冲溶液(PBS)中,该修饰电极对DA有良好的催化作用。DA浓度在5.0×10-7~3.2×10-5 mol/L范围内与氧化峰电流呈良好的线性关系,检出限为3.8×10-8 mol/L。用该修饰电极直接测定了血清中DA含量,回收率在97.8%~101.1%之间。  相似文献   

10.
本文设计合成了一种石墨烯/壳聚糖复合物薄膜,并将其作为电化学电极应用于选择性检测具有旋光活性的色氨酸(Trp)对映体。采用X射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、透射和扫描电子显微镜表征了石墨烯/壳聚糖复合物的结构。以石墨烯/壳聚糖复合物为电极,通过示差脉冲伏安法实现了Trp对映异构体的识别,结果表明L-Trp比D-Trp具有更高的电化学响应,并且峰电流密度和Trp的浓度在0.3×10-4~1.5×10-4 mol·L-1范围内有线性关系。该复合物电极具有厚度和面积可控、稳定性高等优点,可显著提高电化学检测中的电流信号,有望用于分子药物及临床医学领域中手性对映体的识别。  相似文献   

11.
A novel and simple chiral sensing platform had been successfully fabricated by means of amidation reaction between 3, 4, 9, 10-perylenetetracarboxylic acid (PTCA) and chitosan (CS) to form 3, 4, 9, 10-perylenetetracarboxylic acid–chitosan (PTCA–CS) composite film. Since CS has chiral center and PTCA has excellent electrical conductivity, the PTCA–CS composite modified glassy carbon electrode (PTCA–CS/GCE) could be treated as an effective electrochemical chiral sensor and applied for chiral discrimination of tryptophan (Trp) enantiomers theoretically. PTCA–CS composite was characterized by Fourier transform infrared (FTIR) spectroscopy and cyclic voltammetry (CV). When the prepared chiral sensing interface interacted with tryptophan isomers, a higher selectivity was received from D-Trp by differential pulse voltammetry (DPV). It indicated that the PTCA–CS/GCE can be treated as an electrochemical chiral sensor for the discrimination of Trp enantiomers. Further study demonstrated that the peak currents were linearly increased with the increasing percentage of L-Trp of Trp racemic mixture. Furthermore, the enantioselective interaction of the PTCA–CS/GCE was systematically studied by other experimental factors, such as the incubation time and acidity.  相似文献   

12.
A graphene quantum dots (GQDs)–chitosan (CS) composite film was prepared via successive electrodeposition of GQDs and CS on the surface of a glassy carbon electrode (GCE). The strong interactions between GQDs and CS resulted in the formation of a regular and uniform film, which can be applied in the electrochemical chiral recognition of tryptophan (Trp) enantiomers. CS in the composite film provides a chiral microenvironment, meanwhile, GQDs can amplify the electrochemical signals and improve the recognition efficiency. Due to the synergetic effect of GQDs and CS, chiral recognition of Trp enantiomers is achieved successfully. Compared with previous reports utilizing GQDs in photoluminescent research, this work opens a new avenue for broadening the applications of GQDs in the electrochemically chiral sensors.  相似文献   

13.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

14.
An electrochemical chiral multilayer nanocomposite was prepared by modifying a glassy carbon electrode (GCE) via opposite-charge adsorption of amino-modified β-cyclodextrin (NH2-β-CD), gold-platinum core-shell microspheres (Au@Pts), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs). The modified GCE was applied to the enantioselective voltammetric determination of tryprophan (Trp). The Au@Pts enable an effective immobilization of the chiral selector (NH2-β-CD) and enhance the electrochemical performance. Scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy, FTIR and electrochemical methods were used to characterize the nanocomposite. Trp enantiomers were then determined by differential pulse voltammetry (DPV) (with a peak potential of +0.7 V vs. Ag/AgCl). The recognition efficiency was expressed by an increase in peak height by about 32% for DPV determinations of L-Trp compared to D-Trp in case of a 5 mM Trp solution of pH 7.0. Response was linear in the 10 μM to 5.0 mM concentration range, and the limits of detection were 4.3 μM and 5.6 μM with electrochemical sensitivity of 43.5 μA·μM?1·cm?2 and 34.6 μA·μM?1·cm?2 for L-Trp and D-Trp, respectively (at S/N =?3).
Graphical Abstract Schematic of an electrochemical chiral multilayer nanocomposite composed of multi-walled carbon nanotubes (MWCNTs), polyethyleneimine (PEI), gold-platinum core-shell microspheres (Au@Pt) and amino-modified β-cyclodextrin (NH2-β-CD). It was prepared by modifying a glassy carbon electrode (GCE) for enantioselective voltammetric determination of tryptophan (Trp) enantiomers.
  相似文献   

15.
以NaOH蚀刻后的玻碳电极为基底制备了高灵敏与高选择性的大肠杆菌电化学DNA传感器。经NaOH蚀刻后的玻碳电极被活化且在电极表面形成羧基层,为DNA探针的固定提供了更多位点,在偶联剂EDC/NHS的作用下,端氨修饰的探针DNA与羧基的羧氨反应使其以肽键的形式固定在电极表面,极大地提升了传感器的灵敏度。通过电化学循环伏安法(CV)和差分脉冲法(DPV)对所制备传感器的灵敏度和选择性进行表征,得到该传感器对大肠杆菌的线性检测范围为12.5~62.5 nmol/L,检出限可达1.20×10~(-9)mol/L。  相似文献   

16.
Wang Y  Yin X  Shi M  Li W  Zhang L  Kong J 《Talanta》2006,69(5):1240-1245
A novel electrochemical sensor with capability of probing chiral amino acids with gold nanoparticle (n-Au) labels using bovine serum albumin (BSA) as a chiral selector and subsequent signal amplification step by silver enhancement is introduced. The assay relies on the stereoselectivity of BSA embedded in ultrathin γ-alumina sol–gel film coated on the surface of the glassy carbon electrode (GCE). The recognition to the n-Au-labeled l- or d-amino acids for BSA-GCE could be monitored by the differential pulse voltammetry (DPV), while the DPV signal was greatly amplified by the anchored silver atoms on the n-Au, leading to a new way of quantitatively analysis of chiral amino acids electrochemically at sub-picomolar level. With l-tryptophan as the probe solute, the linear concentration range was from 1.33 × 10−12 to 1 × 10−9 mol L−1 and detection limit was 5 × 10−13 mol L−1. For tryptophan enantiomers, the enantioselectivity coefficient 2.3 was obtained.  相似文献   

17.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

18.
王存  张毅  孟丽  赵欣  王跃 《分析测试学报》2017,36(9):1124-1128
采用滴涂法得到多壁碳纳米管(MWCNTs)修饰的玻碳电极(GCE),通过电沉积方法将3-氨基-5-巯基-1,2,4-三唑(TA)沉积在MWCNTs/GCE表面,制备了聚(3-氨基-5-巯基-1,2,4-三唑)/多壁碳纳米管修饰电极(p TA/MWCNTs/GCE)。采用循环伏安法(CV)和示差脉冲伏安法(DPV),研究了尿酸(UA)、黄嘌呤(XA)和次黄嘌呤(HX)在该修饰电极上的电化学行为。结果表明,该修饰电极对UA、XA和HX均有较好的电催化活性作用,能实现对3种物质的同时测定。UA、XA和HX在该修饰电极上的线性范围分别为9.0~739.0、2.0~259.0、1.0~353.0μmol/L;检出限分别为0.67、0.17、0.33μmol/L。该修饰电极已成功用于尿液和血清实际样品中UA、XA和HX的同时测定,回收率为98.8%~105.5%。  相似文献   

19.
As a natural chiral selector, bovine serum albumin (BSA) has been used to recognize penicillamine (Pen) enantiomers through electrochemical methods. The recognition and assay rely on the stereoselectivity of BSA embedded in ultrathin Al2O3 sol–gel film coated on the surface of glassy carbon electrode (BSA/GCE). The enantioselective interaction between Pen enantiomers and BSA was monitored by cyclic voltammetry and electrochemical impedance spectroscopy measurements, from which larger response signals were obtained from d-Pen. The factors influencing the performance of the modified biosensor were also investigated. The association constant (K) was calculated to be 1.93?×?104?L?mol?1 for d-Pen and 1.20?×?103?L?mol?1 for l-Pen. A good linear response was exhibited with the concentration of Pen enantiomers by BSA/GCE over the range of 1?×?10?8–1?×?10?1?mol?L?1 with a detection limit of 3.31?×?10?9?mol?L?1.  相似文献   

20.
The development of a quercetin‐graphene composite‐modified glassy carbon electrode (Qu/GH/GCE) for the selective and sensitive detection of dopamine (DA) is described in this paper. To fabricate the Qu/GH/GCE, graphene (GH) was first coated onto the surface of a glassy carbon electrode (GCE) and then quercetin (Qu) was electrodeposited on the GH matrix. Transmission electron microscopy (TEM) was used to characterize the morphology of the obtained GH and Qu/GH, and the electrochemical properties of the modified electrode were studied using electrochemical techniques. The as‐prepared Qu/GH/GCE occupied a synthetic property between GH and Qu. The common overlapped electrochemical oxidation peaks of DA and AA were completely separated and a remarkable increasing electron‐oxidation current of DA occurred on the Qu/GH/GCE, which enabled the sensitive and selective electrochemical detection of DA in the presence of ascorbic acid (AA) with peak difference of ca. 452 mV between DA and AA. The peak current obtained at 0.174 V (vs. saturated calomel electrode, SCE) from differential pulse voltammetry (DPV) is linearly dependent on the DA concentration in the range from 3.0×10?8 to 4.0×10?4 mol/L with a detection limit of 1.0×10?8 mol/L. Furthermore, the Qu/GH/GCE exhibits good reproducibility and stability, and has been used for the determination of DA in samples of rat’s striatum tissue with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号