首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extruded parts of non‐sterilized and β‐irradiated (25 and 50 kGy) plasticized poly(vinyl chloride) (PVC) used for disposable medical devices have been studied to investigate the effect of sterilization on surface chemical composition. The polymer surfaces were analysed using angle‐resolved x‐ray photoelectron spectroscopy. The inner surface of the blood tubing lines showed a fairly smooth surface both before and after sterilization, so a laterally homogeneous surface can be assumed for XPS analysis. The XPS survey spectra exhibited no signals besides carbon, chlorine, oxygen and calcium. Detailed analysis of the regions showed the C 1s, Cl 2p and O 1s signals to be multi‐component, presenting signals of the PVC, the plasticizer and the other additives. Binding energies remained constant irrespective of β‐radiation dosage, but the amount of chlorine component at 198.4 ± 0.1 eV (associated with modified PVC) decreased with sterilization dosage. Angle‐resolved XPS revealed that this component is located at the outermost surface of the polymer. It can be hypothesized that the production processes themselves (extrusion and/or injection molded) already induce modifications of the polymer surface and also lead to surface segregation of the plasticizer. During the subsequent thermal sterilization of the polymer dehydrochlorination continues but, because of the very short time required by the β‐irradiation technology to sterilize devices, the atmospheric oxygen is unable to diffuse into the irradiated material, thus inhibiting further side‐degradation of the materials, such as thermo‐oxidative degradation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
《先进技术聚合物》2018,29(8):2327-2335
Bioresorbable stents (BRS) offer the potential to improve long‐term patency rates by providing support just long enough for the artery to heal itself. While manufacturing methods to produce BRS using the appropriate architecture, material and mechanical studies, etc., have received much attention, the effects subsequent sterilization methods have on BRS properties are overlooked. Sterilization process can change a device's properties. This work presents the effects ethanol, ultraviolet light (UV), and antibiotic sterilization processes at 0.5, 1, 2, 4, 8, and 16 hours have on a novel 3D‐printed polycaprolactone stent. The stents were analysed using sterility tests, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, mass spectrometry, for molecular weight, and degradation tests. Results have shown ethanol to be an effective sterilization treatment as it barely affected the material's properties. On the other hand, UV had a considerable influence (mainly produced by the photodegradation of UV irradiation) on crystallinity and molecular weight. Lastly, while antibiotic sterilization did not affect crystallinity to the same degree, it did substantially reduce the molecular weight of the samples. Ethanol results in being the best sterilization method for the high material requirements that medical devices such as stents have.  相似文献   

3.
A wound dressing should ideally provide an optimal healing environment which enables rapid healing. It should maintain a moist environment at the wound surface, allow gas exchange, act as a barrier to microorganisms, remove excess exudates and afford mechanical protection to the wound. A new bioresorbable hybrid wound dressing which combines a poly(DL‐lactic‐co‐glycolic acid) porous top layer with a spongy collagen sublayer was developed and studied. The top layer contained the antibiotic drug gentamicin for controlled release to the wound site. It is of very high importance to use an appropriate sterilization process for this special new wound dressing, which will not have a deleterious effect on its function. Our investigation therefore focused on the effects of gamma‐irradiation sterilization (10, 25, 35 and 50 kGy) on the structure properties of this wound dressing. The physical and mechanical properties were of the wound dressings were affected by the gamma irradiation because of a combination of chain scission and crosslinking of the collagen layer mainly. The weight loss and water vapor transmission rate were increased, while the water uptake was decreased with the increase in the irradiation dose. The changes were small when doses of 10 or 25 kGy were applied at room temperature. The gamma‐irradiation resulted in stronger but more brittle wound dressings. These trends were smaller when the sterilization process was carried out in liquid nitrogen. Our research shows that gamma‐sterilization process is feasible for our new concept of hybrid wound dressings and optimal conditions can be chosen. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Pentenary Cu2ZnSn(SySe1?y)4 (kesterite) photovoltaic absorbers are synthesized by a one‐step annealing process from copper‐poor and zinc‐rich precursor metallic stacks prepared by direct‐current magnetron sputtering deposition. Depending on the chalcogen source—mixtures of sulfur and selenium powders, or selenium disulfide—as well as the annealing temperature and pressure, this simple methodology permits the tuning of the absorber composition from sulfur‐rich to selenium‐rich in one single annealing process. The impact of the thermal treatment variables on chalcogenide incorporation is investigated. The effect of the S/(S+Se) compositional ratio on the structural and morphological properties of the as‐grown films, and the optoelectronic parameters of solar cells fabricated using these absorber films is studied. Using this single‐step sulfo‐selenization method, pentenary kesterite‐based devices with conversion efficiencies up to 4.4 % are obtained.  相似文献   

5.
The solid‐melt interfaces between polyethylene (PE) and polyamide 6 (PA6) reinforced by in situ reactive compatibilization in a sequential two‐staged injection molding process has been studied in this work. The effects of the maleic anhydride grafted PE content and processing parameters, such as injection pressure, injection speed, melt temperature, and mold temperature, on the interfacial adhesion were investigated experimentally. The results of the interfacial adhesion characterized by lap shear measurement showed that the interfacial temperature and heat transfer between PE and PA6 interfaces play a very significant role in the bonding process. The fracture surfaces of the specimens prepared at different calculated interfacial temperature were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), which suggested that the fracture failure changes from adhesive to cohesive failure with increasing interfacial temperature. The contribution of crystalline parts of the in situ formed copolymers to the enhancement in interfacial adhesion also was determined by DSC analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1112–1124, 2009  相似文献   

6.
We demonstrate the use of two different wavelength ranges of excitation light as inputs to remotely trigger the responses of the self‐assembled DNA devices (D‐OR). As an important feature of this device, the dependence of the readout fluorescent signals on the two external inputs, UV excitation for 1 min and/or near infrared irradiation (NIR) at 800 nm fs laser pulses, can mimic function of signal communication in OR logic gates. Their operations could be reset easily to its initial state. Furthermore, these DNA devices exhibit efficient cellular uptake, low cytotoxicity, and high bio‐stability in different cell lines. They are considered as the first example of a photo‐responsive DNA logic gate system, as well as a biocompatible, multi‐wavelength excited system in response to UV and NIR. This is an important step to explore the concept of photo‐responsive DNA‐based systems as versatile tools in DNA computing, display devices, optical communication, and biology.  相似文献   

7.
Fabrication of electrospun fibrous scaffolds as future medical devices is being widely researched, with particular emphasis given to their material properties and effect on cell response and differentiation. However, the vast majority of these scaffolds are sterilized via nonmedically approved methods, including submersion in ethanol and exposure to UV light. Although these techniques are adequate for laboratory‐based research, they are not sufficient for human implantation. In this case, regulatory approved, medical grade sterilization is required. In this study, we report the effects of gamma irradiation, a regulatory approved technique, on electrospun poly(ε‐caprolactone) fibers. Fabricated fibers were separately subjected to different dosages of irradiation ranging from 0 to 45 kGy and then assessed for their physicochemical properties. Gamma irradiation affected fiber properties irrespective of dosage. A dose‐dependent decrease in polymer molecular weight was observed and an increase in melting point and crystallinity reported. Similarly, irradiation had a significant effect on mechanical properties with greatest decrease in tensile strength (68%) for fibers exposed to 40 kGy. The method of sterilization had no effect on cell response. Seeded tenocytes attached to all fibers and elongated parallel to the underlying fiber direction. The results demonstrate the importance of incorporating medical grade sterilization procedures early in the research projects time line to assist translation from bench to clinic. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

8.
Photoinduced electron transfer process is a crucial step in photooxidation to obtain synthetic chemicals. However, the driving forces of electron transfer as priority in all have been rarely studied in stepwise detail. Herein, we report a series of BODIPY derivatives with an emphasis on the intramolecular charge transfer, enhancing the key step of photoinduced electron transfer process and photooxidation performances. A series of novel BODIPY photosensitizers ( B‐1 – B‐5 ) were prepared, wherein diethylamine amino of B‐3 as charge injection group was conjugated to the 2,6‐diiodo‐styryl‐BODIPY, and the electron transfer impetus was enhanced 1.6 times due to its more negative redox potentials. These results were also confirmed by the DFT/TDDFT calculation. Without pure oxygen, B‐3 still can exhibit an exceptional performance in photoxidative aromatization of 1,4‐DHP under mild condition. After irradiation for 28 min, the conversion rate came to 98.2%.  相似文献   

9.
Photosensitive ultrathin films with phosphate‐containing polyanions and diazoresin (DR) as a polycation were fabricated with a self‐assembly technique. The phosphate‐containing polyanions were poly(sodium phosphate), phosphorylated poly(vinyl alcohol), and DNA. The fabrication process was monitored by the determination of the absorbance from DR. The surface morphology of the multilayer films was observed with atomic force microscopy. Under ultraviolet irradiation, the linkage between the layers of the films changed from being ionic to being covalent; as a result, the stability of the films toward polar solvents increased. This kind of film may have applications for biosensor devices. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 222–228, 2002  相似文献   

10.
Ir‐catalyzed cascade dehydrogenative CH/BH and BH/OH cross‐coupling of carboranyl carboxylic acid with readily available benzoic acid has been achieved, leading to the facile synthesis of previously unavailable carborano‐coumarin in a simple one‐pot process. Two cage B—H, one aryl C—H and one O—H bonds are activated to construct efficiently new B—C and B—O bonds. The cascade cyclization can stop at the first B—H/C—H cross‐coupling step by tuning the reaction conditions, resulting in a series of α‐carboranyl benzoic acid and aryl carborane derivatives. Control experiments indicate that B—H/C—H dehydrocoupling proceeds preferentially over B—H/O—H dehydrocoupling, and both directing groups and oxidants are crucial for this reaction. An iridium(V) intermediate is proposed to be involved in the catalytic cycle.  相似文献   

11.
In this study, the athermal effects of water‐filtered infrared A (wIRA)‐irradiation (780–1400 nm) on human dermal fibroblasts were investigated. For this purpose, cells were exposed to wIRA‐irradiation (178 mW cm?2 for 1 h), while a sophisticated experimental setup prevented warming of the samples exceeding 0.1°C. The investigated parameters were the formation of reactive oxygen species (ROS), mitochondrial membrane potential and superoxide release, protein oxidation, proliferation rate, as well as intracellular Ca2+‐release in single cells, most of them quantified via fluorescence microscopy and fluorimetric techniques. The existence of actual athermal wIRA‐effects is still intensively discussed, since their detection requires a careful experimental setup and both efficient and powerful temperature regulation of the exposed samples. Here, we can definitively show that some of the supposed athermal wIRA‐effects may be rather artifacts, since wIRA did not reveal any impact on the above mentioned parameters—as long as the temperature of the exposed cells was carefully maintained. Though, we were able to identify an athermal DNA‐protective wIRA‐effect, since the induced DNA damage (quantified via 8‐Oxo‐G‐formation) was significantly decreased after a subsequent UVB‐exposure. These results suggest that many of the supposed athermal wIRA‐effects can be induced by pure warming of the samples, independent from any wIRA‐irradiation.  相似文献   

12.
The palladium‐catalyzed desymmetrization of silacyclobutanes using electron‐deficient alkynes proceeds with high enantioselectivity in the presence of a chiral P ligand; this provides a facile approach for the synthesis of novel silicon‐stereogenic silanes. In this work, we used hybrid density functional theory (DFT) to elucidate the mechanism of the palladium‐catalyzed desymmetrization of silacyclobutanes with dimethyl acetylenedicarboxylate. Full catalytic cycle including two different initiation modes that were proposed to be a possible initial step to the formation of the 1‐pallada‐2‐silacyclopentane/alkyne intermediate—the oxidative addition of the palladium complex to the silacyclobutane Si?C bond (cycle MA) or coordination of the Pd0 complex with the alkyne C≡C bond (cycle MB)—have been studied. It was found that the ring‐expansion reaction began with cycle MB is energetically more favorable. The formation of a seven‐membered metallocyclic PdII intermediate was found to be the rate‐determining step, whereas the enantioselectivity‐determining step, oxidative addition of silacyclobutane to the three‐membered metallocyclic PdII intermediate, was found to be quite sensitive to the steric repulsion between the chiral ligand and silacyclobutane.  相似文献   

13.
On‐surface Pd‐ and Cu‐catalyzed C?C coupling reactions between phenyl bromide functionalized porphyrin derivatives on an Au(111) surface have been investigated under ultra‐high vacuum conditions by using scanning tunneling microscopy and kinetic Monte Carlo simulations. We monitored the isothermal reaction kinetics by allowing the reaction to proceed at different temperatures. We discovered that the reactions catalyzed by Pd or Cu can be described as a two‐phase process that involves an initial activation followed by C?C bond formation. However, the distinctive reaction kinetics and the C?C bond‐formation yield associated with the two catalysts account for the different reaction mechanisms: the initial activation phase is the rate‐limiting step for the Cu‐catalyzed reaction at all temperatures tested, whereas the later phase of C?C formation is the rate‐limiting step for the Pd‐catalyzed reaction at high temperature. Analysis of rate constants of the Pd‐catalyzed reactions allowed us to determine its activation energy as (0.41±0.03) eV.  相似文献   

14.
Efficient hydrogen evolution via electrocatalytic water splitting holds great promise in modern energy devices. Herein, we demonstrate that the localized surface plasmon resonance (LSPR) excitation of Au nanorods (NRs) dramatically improves the electrocatalytic hydrogen evolution activity of CoFe‐metal–organic framework nanosheets (CoFe‐MOFNs), leading to a more than 4‐fold increase of current density at ?0.236 V (vs. RHE) for Au/CoFe‐MOFNs composite under light irradiation versus in dark. Mechanistic investigations reveal that the hydrogen evolution enhancement can be largely attributed to the injection of hot electrons from AuNRs to CoFe‐MOFNs, raising the Fermi level of CoFe‐MOFNs, facilitating the reduction of H2O and affording decreased activation energy for HER. This study highlights the superiority of plasmonic excitation on improving electrocatalytic efficiency of MOFs and provides a novel avenue towards the design of highly efficient water‐splitting systems under light irradiation.  相似文献   

15.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

16.
《化学:亚洲杂志》2017,12(7):753-758
Hybrid nanocrystals of PVBA‐b ‐PS/ZIF‐8 were prepared by the growth of ZIF‐8 on the surface of the self‐assembled structures from poly(p ‐vinylbenzoic acid)‐block‐polystyrene. Two different morphologies—micelles and vesicles—were obtained in selective solvents owing to the different ratios of PVBA to PS blocks. The structure and morphology of the PVBA‐b ‐PS/ZIF‐8 composites were characterized by Fourier transform IR spectroscopy, thermogravimetric analysis, X‐ray diffraction, transmission electron microscopy and scanning electron microscopy. PVBA‐b ‐PS/ZIF‐8 showed high catalytic performance in Knoevenagel condensation reactions at room temperature, which were attributed to the more exposed active sites of the small ZIF‐8 nanocrystals grown in a confined space and a high concentration of reactants in the polymeric aggregates.  相似文献   

17.
The applicability of different concentration detection methods for online quantification of liposomes upon asymmetric flow field‐flow fractionation was investigated. Filter‐extruded egg phosphatidylcholine liposomes of different size were used. Online quantification using a differential refractive index (dRI) detector was found feasible for relatively high sample loads in the magnitude of 100 μg lipid (under the chosen fractionation conditions). UV–Vis detection of the turbidity of liposomes was ruled out as online detection method because turbidity increases with particle size and the signal is not only concentration but also particle‐size dependent. Staining of liposomes by Rhodamine phosphatidylethanolamine or Sudan Red and subsequent online UV–Vis detection at the absorption maximum of the dye enabled quantification with much higher sensitivity than dRI detection. Furthermore analyte loss and carry‐over phenomena upon repeated injection of varying liposome sample loads were studied using regenerated cellulose (RC) membranes as accumulation wall. It could be shown that RC membranes are prone to adsorption in case of very small sample loads (0.5 μg). This effect may be overcome by pre‐saturation of the membrane with sample loads of at least 2 μg. For higher sample loads adsorptive losses play a minor role. Recovery from pre‐saturated membranes reached approximately 100% and carry‐over was found negligible.  相似文献   

18.
UV‐light irradiation induces the formation of highly mutagenic lesions in DNA, such as cis‐syn cyclobutane pyrimidine dimers (CPD photoproducts), pyrimidine(6‐4)pyrimidone photoproducts ((6‐4) photoproducts) and their Dewar valence isomers ((Dew) photoproducts). Here we describe the synthesis of defined DNA strands containing these lesions by direct irradiation. We show that all lesions are efficiently repaired except for the T(Dew)T lesion, which cannot be cleaved by the repair enzyme under our conditions. A crystal structure of a T(6‐4)C lesion containing DNA duplex in complex with the (6‐4) photolyase from Drosophila melanogaster provides insight into the molecular recognition event of a cytosine derived photolesion for the first time. In light of the previously postulated repair mechanism, which involves rearrangement of the (6‐4) lesions into strained four‐membered ring repair intermediates, it is surprising that the not rearranged T(6‐4)C lesion is observed in the active site. The structure, therefore, provides additional support for the newly postulated repair mechanism that avoids this rearrangement step and argues for a direct electron injection into the lesion as the first step of the repair reaction performed by (6‐4) DNA photolyases.  相似文献   

19.
New all‐conjugated block copolythiophene, poly(3‐hexylthiophene)‐block‐poly(3‐(4′‐(3″,7″‐dimethyloctyloxy)‐3′‐pyridinyl)thiophene) (P3HT‐b‐P3PyT) was successfully prepared by Grignard metathesis polymerization. The supramolecular interaction between [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and P3PyT was proposed to control the aggregated size of PCBM and long‐term thermal stability of the photovoltaic cell, as evidenced by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and optical microscopy. The effect of different solvents on the electronic and optoelectronic properties was studied, including chloroform (CL), dichlorobenzene (DCB), and mixed solvent of CL/DCB. The optimized bulk heterojunction solar cell devices using the P3HT‐b‐P3PyT/PCBM blend showed a power conversion efficiency of 2.12%, comparable to that of P3HT/PCBM device despite the fact that former had a lower crystallinity or absorption coefficient. Furthermore, P3HT‐b‐P3PyT could be also used as a surfactant to enhance the long‐term thermal stability of P3HT/PCBM‐based solar cells by limiting the aggregated size of PCBM. This study represents a new supramolecular approach to design all‐conjugated block copolymers for high‐performance photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

20.
By means of a simple ion‐exchange process (using different precursors) and a light‐induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self‐assembled structures—including microrods, irregular balls, and hollow spheres—have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, and UV‐visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2 mol %. All the catalysts show strong absorption in the visible‐light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible‐light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号