首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   4篇
化学   38篇
力学   1篇
数学   6篇
物理学   22篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   8篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1986年   1篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1–2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.  相似文献   
2.
A tunnel magnetic junction is considered with magnetic hard and magnetic soft layers of cubic symmetry. The magnetic switching of the layers is analyzed for a magnetic field perpendicular to the initial magnetizations. In such a situation, an additional peak in the tunnel magnetoresistance ratio appears at the magnetic field value that is substantially lower than the anisotropy field of the soft layer.  相似文献   
3.
4.
The possibility of resonance absorption in the terahertz range caused by the sd-exchange interaction at the incidence of an electromagnetic wave on a ferromagnetic metal has been predicted. The absorption coefficient has been calculated. It has been shown that the resonance frequency is determined by the magnetization of a ferromagnet and the absorption coefficient additionally depends on the orientation of the magnetization with respect to the plane of polarization of the wave.  相似文献   
5.
This paper examines joint storage considerations when both commodities and resources can be stored, e.g., grain and water for irrigation. Results suggest that when separate agencies control public resource and commodity storage, suboptimal storage rules occur unless (i) each agency is sensitive to the policies of the other, (ii) commodity inventories are adjusted in response to prices, and (iii) resource inventories are adjusted in response to both commodity demand and resource supply conditions. For example, the common case where water storage depends on weather and reservoir conditions alone is not sufficiently general. The results imply that water management agencies that tend to be dominated by engineers and hydrological considerations need to incorporate economic considerations into decision processes.  相似文献   
6.
Zilberman G  Smith AL 《The Analyst》2005,130(11):1483-1489
Quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) is a new measurement technology that has been used to monitor simultaneously the mass and motional resistance of a thin film in conjunction with the heat flow produced by a chemical change in the film initiated by reaction with a gas. In this work we examine the applicability of the QCM/HCC in detecting chemical changes at the solution/thin film interface. Human serum albumin (HSA) was bound to the gold electrode of a 5 MHz AT-cut quartz resonator using three types of linkers and then exposed to buffered solutions of the anticoagulant drug warfarin. Changes in resonator frequency and motional resistance as well as changes in heat flow produced by warfarin binding to HSA were monitored as a function of the warfarin concentration. Differences in frequency and motional resistance changes depend upon the linker and vary both in magnitude and sign, whereas the integrated heat signal is proportional to the concentration of warfarin and independent of the linker chemistry. Quartz crystal microbalance/heat conduction calorimetry can thus be a useful tool for studying protein-ligand interactions at the solution-surface interface, even though the quartz resonator does not behave as a microbalance.  相似文献   
7.
The thermal degradation behavior of novel ultra-fire-resistant polymers and copolymers containing deoxybenzoin units in the backbone was studied by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The polymers were synthesized by the polycondensation of 4,4′-bishydroxydeoxybenzoin (BHDB) with isophthaloyl chloride (to give polyarylates), phenylphosphonic dichloride (to give polyphosphonates), and their mixtures (to give poly(arylate-co-phosphonate) copolymers). The thermal decomposition, under nitrogen conditions, of BHDB-polyarylate was characterized by a simultaneous degradation of both the bisphenolic (deoxybenzoin) and isophthalate sub-units, whereas a three-step decomposition phenomenon was observed for the BHDB-polyphosphonate. BHDB-polymers containing phosphonate groups in the backbone did not show any phosphorus-based volatile decomposition products, whereas the corresponding bisphenol A-based polyphosphonates released volatile decomposition products comprised mainly of phosphorus-containing compounds.  相似文献   
8.
The diphenylalanine peptide, the core recognition motif of the beta-amyloid polypeptide, efficiently self-assembles into discrete, well-ordered nanotubes. Here, we describe the notable thermal and chemical stability of these tubular structures both in aqueous solution and under dry conditions. Scanning and transmission electron microscopy (SEM and TEM) as well as atomic force microscopy (AFM) revealed the stability of the nanotubes in aqueous solution at temperatures above the boiling point of water upon autoclave treatment. The nanotubes preserved their secondary structure at temperatures up to 90 degrees C, as shown by circular dichroism (CD) spectra. Cold field emission gun (CFEG) high-resolution scanning electron microscope (HRSEM) and thermogravimetric analysis (TGA) of the peptide nanotubes after dry heat revealed durability at higher temperature. It was shown that the thermal stability of diphenylalanine peptide nanotubes is significantly higher than that of a nonassembling dipeptide, dialanine. In addition to thermal stability, the peptide nanotubes were chemically stable in organic solvents such as ethanol, methanol, 2-propanol, acetone, and acetonitrile, as shown by SEM analysis. Moreover, the acetone environment enabled AFM imaging of the nanotubes in solution. The significant thermal and chemical stability of the peptide nanotubes demonstrated here points toward their possible use in conventional microelectronic and microelectromechanics processes and fabrication into functional nanotechnological devices.  相似文献   
9.
Naturally derived materials are becoming widely used in the biomedical field. Soy protein has advantages over the various types of natural proteins employed for biomedical applications due to its low price, nonanimal origin, and relatively long storage time and stability. In the current study, novel drug‐eluting soy‐protein films for wound healing applications were developed and studied. The films were prepared using the solvent casting technique. The analgesic drug bupivacaine and two types of wide range antibiotics (gentamicin and clindamycin) were incorporated into the soy‐protein films. The effect of drug incorporation and plasticizers content on the films' mechanical properties, drug release profiles, and cell viability was studied. Drug incorporation had a softening effect of the films, lowering mechanical strength and increasing ductility. Release profiles of bupivacaine and clindamycin exhibited high burst release of 80% to 90% of encapsulated drug within 6 hours, followed by continuous release in a decreasing rate for a period of 2 to 4 days. Gentamicin release was prolonged, probably due to interaction between the gentamicin and the polymer chains. Hybrid soy‐protein/poly (Dl‐lactic‐co‐glycolic acid) (PDLGA) microspheres structure showed potential for long and sustained release of bupivacaine. Films with no drugs and films loaded with gentamicin were found to be noncytotoxic for human fibroblasts, while bupivacaine and clindamycin were found to have some effect on cell growth. In conclusion, our new drug‐loaded soy‐protein films combine good mechanical properties and biocompatibility, with desired drug release profiles, and can therefore be potentially very useful as burn and ulcer dressings.  相似文献   
10.
We study the passage of transverse current through a ferromagnetic nanojunctions, viz., a layered nanostructure of the spin-valve type containing two ferromagnetic layers separated by a spacer that prevents exchange coupling between the layers in the absence of current, but does not affect spin polarization of the current. The conditions for a high level of injection of spins by current are derived at which the concentration of injected nonequilibrium spins can reach or even exceed their equilibrium concentration. In such conditions, a number of new effects are observed. The threshold of exchange switching by current is lowered by several orders of magnitude due to matching of spin resistances of the layers. The application of an external magnetic field in the vicinity of the orientation phase transition additionally lowers this threshold. This leads to multistability, in which one value of the current corresponds to two (or more) stable noncollinear orientations of magnetization, and switching itself becomes irreversible. A methodical feature of this research is that the calculation is performed in the so-called macrospin approximation, which is in good agreement with most of known experiments. In this approximation, the equations of motion taking into account the torque as well as spin injection are derived for the first time and solved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号