首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
以铂为基底电极,在1-乙基咪唑三氟乙酸盐(HEImTfa)离子液体中电化学合成导电聚吡咯(PPy),制得PPy-HEImTfa/Pt电极;采用循环伏安法研究了PPy-HEImTfa/Pt电极对抗坏血酸的电催化氧化性能.结果表明:PPy-HEImTfa/Pt电极对0.1mo·lL-1抗坏血酸具有较高的电催化氧化活性,与相同条件下硫酸溶液中在铂表面修饰的聚吡咯(PPy-H2SO4/Pt)电极和裸铂电极相比,其氧化峰电位分别降低了0.10和0.19V,氧化峰电流分别增加了3.0和3.6mA.同时采用原位傅里叶变换红外(insitu FTIR)光谱技术对抗坏血酸在PPy-HEImTfa/Pt电极上的电氧化机理进行了研究,结果表明:抗坏血酸在PPy-HEImTfa/Pt电极上首先被氧化为脱氢抗坏血酸,在水溶液中脱氢抗坏血酸迅速发生水合作用形成水合脱氢抗坏血酸,它进一步水解并发生内酯开环反应生成2,3-二酮古洛糖酸;在较高电位下,部分抗坏血酸最终被氧化成CO2.  相似文献   

2.
应用循环伏安法(CV),扫描电子显微镜(SEM)和电化学原位红外反射光谱(in situFTIRS)研究了不同介质对碳载铂纳米薄膜电极(Pt/GC)的表面结构以及该薄膜电极对甲酸电催化氧化性能的影响.结果表明,使用不同介质的镀铂溶液,均可电沉积出分布较为均匀的Pt粒子,但其尺寸与形貌却相差很大.当以H2SO4作介质,由循环伏安法于玻碳电极上电沉积Pt得到的(Pt/GC1)电极,其Pt粒子粒径约100~200 nm;而在HClO4介质得到的(Pt/GC2)电极,则含有两种Pt微晶:其一是立方体形,粒径约200 nm,其二为菜花状,粒径约400 nm.电化学循环伏安和原位红外反射光谱测试指明,不同介质制备的Pt/GC电极对甲酸的电催化氧化均表现出与本体铂电极(Pt)相类似的特性,即可通过活性中间体或毒性中间体将甲酸氧化至CO2,但不同结构的Pt/GC电极具有不同的电催化活性.进一步以Sb或Pb修饰Pt/GC电极,不仅可以有效地抑制毒性中间体CO的生成,而且还能显著提高其电催化活性.比较本文研究的7种电极,其电催化活性顺序依次为:Sb-Pt/GC2>Pb-Pt/GC2>Pb-Pt/GC1>Sb-Pt/GC1>Pt/GC2>Pt/GC1>Pt.  相似文献   

3.
自组装纳米金膜上铂微/纳结构电催化剂的制备及性能   总被引:1,自引:1,他引:0  
基于纳米金(AuNP)表面基团的静电自组装作用制备了多层有序的纳米金超薄膜. 研究了自组装纳米金超薄膜上铂微/纳结构催化剂(Pt/AuNP)的制备过程. 考察了沉积电位和沉积时间对甲酸电氧化活性的影响, 确定了最佳沉积电位为0 V, 最佳沉积时间为600 s. 同时对比考察了Pt/AuNP/PE/GCE, AuNP/PE/GCE和纯Pt电极在0.1 mol/L H2SO4介质中对甲酸电氧化活性以及载体对沉积物形态和甲酸氧化活性的影响. 研究结果表明, 纳米金组装体对铂的电沉积有明显的促进作用; Pt/AuNP/PE/GCE对甲酸的电氧化有很好的电催化性能.  相似文献   

4.
用化学还原法合成了Aucore@Ptshell纳米粒子, 并用扫描电子显微镜(SEM)及X射线衍射(XRD)等技术对纳米粒子进行表征; 采用电化学原位表面增强拉曼光谱(SERS)技术对甲酸的电催化氧化过程进行了研究, 成功地获得了甲酸在Aucore@Ptshell/Pt电极上解离吸附的原位SERS. 结果显示, 在开路电位时, 甲酸能在Aucore@Ptshell/Pt电极表面自发氧化, 解离生成强吸附中间体COad和弱吸附中间体HCOOad, 在电位为+0.10 V时检测到氧化产物CO2的谱峰. 研究结果表明, Aucore@Ptshell/Pt电极对甲酸的氧化具有较高的催化活性和较强的SERS效应, 甲酸在Aucore@Ptshell/Pt电极上的电催化氧化过程遵循双途径机理.  相似文献   

5.
Pt(110)/Sb电极上甲酸的电催化氧化特征和动力学   总被引:1,自引:0,他引:1  
研究了Sb在Pt(110)晶面上不可逆吸附电化学特性及甲酸在Sbad修饰Pt(110)电极[Pt(110)/Sb]上的电催化氧化特征及其反应动力学.发现当扫描电位的上限Eu≤0.45V时,Sbad可稳定地吸附在Pt(110)表面上,从而有效地抑制了甲酸的解离吸附.与未修饰的Pt(110)上的结果相比,在Pt(110)/Sb上甲酸氧化的峰电位负移了0.35V.当θSb=0.126时,Pt(110)/Sb电极对甲酸的电催化活性最高.还研究了Pt(110)/Sb上甲酸氧化反应的动力学,定量解析了不同θSb下甲酸氧化的速度常数kf和传递系数β.  相似文献   

6.
首次用电沉积法制备了Nd-Fe-WO2-4氰桥混配物修饰铂电极(Nd-Fe-WO2-4/Pt),并通过SEM和XRD技术分别表征了该修饰电极的表面形貌和修饰物的晶相结构.采用循环伏安法和计时电流法研究了甲酸在该修饰电极上的电氧化行为,实验发现甲酸在修饰电极上的电催化氧化电流密度与裸铂电极相比增加了10余倍,而且CV回扫...  相似文献   

7.
七十年代以来,大量文献报道了某些金属原子的欠电位吸附(UPD)对电催化剂特性的影响.一个典型的例子是甲酸氧化中Pt电极上Pb~(2+)的UPD可增强电催化活性.已知甲酸在铂电极上可经两条平行途径氧化至CO_2,  相似文献   

8.
杨改秀  邓玲娟  唐亚文  陆天虹 《应用化学》2009,26(12):1476-1479
用X射线能谱(EDS)、X射线衍射(XRD)和电化学等测试技术研究了电解液中的磷钨酸(PWA)对甲酸在碳载Pt(Pt/C)催化剂电极上氧化的促进作用。 结果表明,PWA不但能提高甲酸在Pt/C催化剂电极上氧化的电催化活性,而且也能提高其电催化稳定性。 这种促进作用与电解液中PWA的浓度有关,当电解液中PWA的质量浓度为0.10 g/L时,这种促进作用最佳。 这主要是由于电解液中PWA质量浓度>0.10 g/L时,吸附到电极表面的PWA的量太多,占据了Pt/C催化剂电极中Pt表面的部分活性位点,从而降低了催化剂的电催化性能。  相似文献   

9.
甲醇在铂修饰的氧化钛电极上电催化氧化行为的研究   总被引:8,自引:0,他引:8  
运用电化学方法评价了电化学阴极还原-阳极氧化两步法制得的以钛为基体的铂修饰的钛氧化物(Pt-TiOx/Ti)电极对甲醇电催化氧化的性能,结果表明,制得的修饰电极对甲醇氧化呈现了很高的电催化活性和好的稳定性.通过X光电子能谱(XPS)、扫描隧道显微镜(STM)和现场傅立叶变换红外(FTIR)反射光谱等技术,发现修饰电极对甲醇氧化具有高的电催化性能,可归属于纳米级Pt粒子在TiOx中的高度分散及由于Pt和TiOx的相互作用,使电极表面对甲醇氧化中间产物CO的吸附量大大降低.  相似文献   

10.
离子注入Pt的玻碳电极上甲酸和甲醛的电氧化   总被引:3,自引:0,他引:3  
制备了离子注入Pt的玻碳电极(Pt/GC),注入剂量为5×1017ion/cm2,此电极的表面组成和各元素的浓度-深度分布用AES测量,注入Pt的价态用XPS测量.在0.5mol/LHClO4溶液中,用Pt/GC电极和纯Pt电极研究了甲酸的电氧化行为,并在五种不同种类的电解质溶液中研究了甲醛的电氧化行为.结果表明,Pt/GC电极对甲酸和甲醛的电催化性能按真实表面积计算优于纯Pt电极.这可能与离子注入Pt过程中形成纳米团簇有关.此外,在同一电极上,甲醛在不同种类的电解质溶液中产生不同的氧化电流.说明阴离子对甲醛的电氧化过程有明显影响  相似文献   

11.
水热氧化法制备γ-Mn2O3   总被引:5,自引:0,他引:5  
万本强 《应用化学》1999,16(2):60-64
研究了用电化学方法制备的铂微粒修饰的聚2,5二甲氧基苯胺电极对甲酸的电催化氧化,用SEM、XPS表征了这种电极材料的表面结构,结果表明,这种复合电极对甲酸在酸性介质中电化学氧化具有很高的催化活性,较之裸铂电极其催化电流提高100多倍.循环伏安法制备的铂微粒较均匀地分布在聚合物上,其粒径大约为300nm.研究了铂微粒载量、阴离子种类、反应温度和浓度等因素对电极催化活性的影响.  相似文献   

12.
采用循环伏安(CV)法、计时电流法和电化学原位表面增强拉曼散射光谱(SERS)技术研究了甲酸在Pt-Ru/GC电极上的氧化行为, 发现甲酸在Pt-Ru/GC电极上与在粗糙Pt电极上一样, 也能自发解离出强吸附中间体CO和活性中间体—COO-. 从分子水平证实钌的加入有利于提高电极对甲酸的电催化氧化活性, 当镀液中Pt:Ru的摩尔比从10∶1变化到1∶1, CO的氧化峰电位从0.41 V负移至0.35 V, 约负移了60 mV. Pt-Ru/GC(1∶1)电极与粗糙Pt电极相比, CO在电极表面氧化完毕的电位亦负移了约200 mV. 该研究结果表明, 电化学原位表面增强拉曼散射光谱技术可望成为研究电催化反应机理的普适谱学工具.  相似文献   

13.
甲醛和甲酸在Pt/Sb_(ad)电极上的电催化氧化   总被引:2,自引:0,他引:2  
李红  江琳才  蒋雄 《电化学》1995,1(1):56-64
研究了甲醛和甲酸在Pt/Sb_(ad)电极上的电催化氧化,在甲醛的情况下,在电位约0.7V处出现一个氧化峰;在甲酸的情况下,第一氢化峰的峰电流增加约4倍.当覆盖度为0.75±0.05时,电极显现最高活性,吸附锑原子在铂电极上具有催化活性的主要原因是通过几何效应阻止吸附毒物(PT- ̄*C=O)的生成。此外,讨论了电解时间、沉积电位、介质等因素对Pt/Sb_(ad)电极催化活性的影响,提出了在较低电位下,甲醛和甲酸在Pt/Sb_(ad)电极上催化氧化的机理.  相似文献   

14.
In this communication, we study the electrocatalytic formic acid oxidation process on an epitaxially grown Pd monolayer on a Pt(100) single crystal in perchloric acid. The formic acid oxidation activity on this PdMLPt(100) electrode in perchloric acid is significantly enhanced compared to the same electrode in sulfuric acid and compared to unmodified Pt(100), with a low onset potential of around 0.14 VRHE. The absence of hysteresis between the positive and negative scan during formic acid oxidation indicates the remarkable resistance to CO poisoning of the Pd monolayer surface. Most importantly, we report, for the first time, a mass-transport-limited formic acid oxidation rate on the PdMLPt(100) rotating electrode in perchlorate acid, setting a catalytic benchmark for future electrocatalysts for formic acid oxidation.  相似文献   

15.
The electrocatalytic activities and mechanisms of PtPb and PtBi ordered intermetallic phases towards formic acid, formaldehyde and methanol oxidation have been studied by DEMS and FTIRS, and the results compared to those for a pure polycrystalline platinum electrode. While PtPb exhibits an enhanced electrocatalytic activity for the oxidation of all three organic molecules when compared to a Pt electrode, PtBi exhibits an enhanced catalytic activity towards formic acid and formaldehyde oxidation, but not methanol. FTIRS data indicate that adsorbed CO does not form on PtPb or PtBi intermetallic compounds during the oxidation of formic acid, formaldehyde and methanol, and therefore their oxidation on both PtPb and PtBi intermetallic compounds proceeds via a non-CO(ads) pathway. Quantitative DEMS measurements indicate that only CO(2) was detected as a final product during formic acid oxidation on Pt, PtPb and PtBi electrodes. At a smooth polycrystalline platinum electrode, the oxidation of formaldehyde and methanol produces mainly intermediates (formaldehyde and formic acid), while CO(2) is a minor product. In contrast, CO(2) is the major product for formaldehyde and methanol oxidation at a PtPb electrode. The high current efficiency of CO(2) formation for methanol and formaldehyde oxidation at a PtPb electrode can be ascribed to the complete dehydrogenation of formaldehyde and formic acid due to electronic effects. The low onset potential, high current density and high CO(2) yield make PtPb one of the most promising electrocatalysts for fuel cell applications using small organic molecules as fuels.  相似文献   

16.
铂钯修饰聚N-乙酰苯胺膜电极对甲酸的电催化氧化   总被引:1,自引:0,他引:1  
由电化学方法在石墨电极表面制备了规整多孔的纳米结构聚N-乙酰苯胺(PAANI)膜,并以其为载体制备了Pt-Pd/PAANI/C二元金属微粒修饰的聚合物复合膜电极.SEM和XRD研究结果表明,Pt、Pd微粒在PAANI膜中均匀分散,有效地改善了催化剂中贵金属的分散度和电极的结构.在0.5mol/L H2SO4+0.5mol/LHCOOH溶液中的循环伏安结果表明,Pt-Pd/PAANI/C电极在酸性溶液中电催化氧化甲酸的性能明显优于直接电沉积的Pt-Pd/C电极,且表现出较高的稳定性.  相似文献   

17.
The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).  相似文献   

18.
Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号