首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the Schiff base ligands 4-(NC5H4)C6H4C(H)N[2′-(OH)C6H4] (a), 3,5-(N2C4H3)C6H4C(H)N[2′-(OH)-C6H4] (b) and 3,5-(N2C4H3)C6H4C(H) N[2′-(OH)-5′-tBuC6H3] (c) with palladium (II) acetate in toluene gave the poly-nuclear cyclometallated complexes [Pd{4-(NC5H4)C6H3C(H)N[2′-(O)C6H4]}]4 (1a), [Pd{3,5-(N2C4H3)C6H3C(H)N[2′-(O)-C6H4]}]4 (1b) and [Pd{3,5-(N2C4H3)C6H3C(H)N[2′-(O)-5′-tBuC6H3]}]4 (1c) respectively, as air stable solids, with the ligand acting as a terdentate [C,N,O] moiety after deprotonation of the –OH group. Reaction of the cyclometallated complexes with triphenylphosphine gave the mononuclear species [Pd{4-(NC5H4)C6H3C(H) N[2′-(O)C6H4]}(PPh3)], (2a), [Pd{3,5-(N2C4H3)C6H3C(H) N[2′-(O)C6H4]}(PPh3)], (2b) and [Pd{3,5-(N2C4H3)C6H3C(H)N[2′-(O)-5′-tBuC6H3)}(PPh3)], (2c) in which the polynuclear structure has been cleaved and the coordination of the ligand has not changed [C,N,O]. When the cyclometallated complexes 1b and 1c were treated with the diphosphines Ph2P(CH2)4PPh2 (dppb), Ph2PC5H4FeC5H4PPh2 (dppf) and Ph2P(CH2)2PPh2 (t-dppe) in a 1:2 molar ratio the dinuclear cyclometallated complexes [{Pd[3,5-(N2C4H3)C6H3C(H)N{2′-(O)C6H4}]}2(μ-Ph2P(CH2)4PPh2)], (3b), [{Pd[3,5-(N2C4H3)C6H3C(H) N{2′-(O)-5′-tBuC6H3}]}2(μ-Ph2P(CH2)4PPh2)], (3c), [{Pd[3,5-(N2C4H3)C6H3C(H)N{2′-(O)C6H4}]}2(μ-Ph2P(η5-C5H4)Fe(η5-C5H4)PPh2)], (4b), [{Pd[3,5-(N2C4H3)C6H3C(H) N{2′-(O)-5′-tBuC6H3}]}2(μ-Ph2P(η5C5H4)Fe(η5C5H4)P-Ph2)], (4c) and [{Pd[3,5-(N2C4H3)C6H3C(H)N{2′-(O)-5′-tBuC6H3}]}2(μ-Ph2P(CHCH)PPh2)], (5c) were obtained as air stable solids.  相似文献   

2.
The experimental and theoretical study on the structures and vibrations of 3,5-dibromosalicylic acid (DBSA) are presented. The FT-IR and FT-Raman of the title compound have been recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman activities were calculated. The energies of DBSA are obtained for all the eight conformers from density functional theory with 6-311++G(d,p) basis set calculations. From the computational results, C1 or C5 forms are identified as the most stable conformers of DBSA. The spectroscopic and theoretical results are compared with the corresponding properties for DBSA monomer and dimer of C1 (or C5) conformer. Intermolecular hydrogen bonds are discussed in dimer structure of the molecule. NBO analysis is useful to understand the intramolecular hyperconjugative interaction between lone pair O9 and C7O8. The calculated HOMO–LUMO energies reveal charge transfer occurs within the molecule. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The isotopic chemical shift computed by 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the DBSA molecule, calculated using the gauge invariant atomic orbital (GIAO) method, also shows good agreement with experimental observations.  相似文献   

3.
Three new tetramines, (ArNHCH(2)CH(2))(3)N, have been synthesized in which Ar = 3,5-(2,4,6-t-Bu(3)C(6)H(2))(2)C(6)H(3) (H(3)[HTBTN(3)N]), 3,5-(2,4,6-Me(3)C(6)H(2))(2)C(6)H(3) (H(3)[HMTN(3)N]), or 4-Br-3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(2) (H(3)[pBrHIPTN(3)N]). The diarylated tetramine, [3,5-(2,4,6-t-Bu(3)C(6)H(2))(2)C(6)H(3)NHCH(2)CH(2)](2)NCH(2)CH(2)NH(2), has also been isolated, and the "hybrid" tetramine [3,5-(2,4,6-t-Bu(3)C(6)H(2))(2)C(6)H(3)NHCH(2)CH(2)](2)NCH(2)CH(2)NH(4-t-BuC(6)H(4)) has been prepared from it. Monochloride complexes, [(TerNCH(2)CH(2))(3)N]MoCl, have been prepared, as well as a selection of intermediates that would be expected in a catalytic dinitrogen reduction such as [(TerNCH(2)CH(2))(3)N]Mo[triple bond]N and [[(TerNCH(2)CH(2))(3)N]Mo(NH(3))][BAr'(4)] (Ter = HTBT, HMT, or pBrHIPT and Ar' = 3,5-(CF(3))(2)C(6)H(3))). Intermediates that contain the new terphenyl-substituted ligands are then evaluated for their efficiency for the catalytic reduction of dinitrogen under conditions where analogous [HIPTN(3)N]Mo species give four turnovers to ammonia under "standard" conditions with an efficiency of approximately 65%. Only [pBrHIPTN(3)N]Mo compounds are efficient catalysts for dinitrogen reduction. The reasons are explored and discussed.  相似文献   

4.
The crystal structure of methyl αd‐mannofuranoside was determined by X‐ray crystallography. The C‐1–C‐2, C‐2–C‐3, C‐3–C‐4, C‐4–O and O‐4–C‐1 distances within the furanoside ring are 1.513(2), 1.523(2), 1.516(2), 1.445(2) and 1.422(2) Å, respectively. The hydrogen bonding consists of O–H–O interactions which include the anomeric oxygen but exclude the ring oxygen atom. The two hydroxyls OH‐6 and OH‐2 are H‐bond acceptors and donors with H···O distances of 1.92–1.93 Å, whereas the OH‐3 and OH‐5 are only H‐bond donor [H···O distance of 2.04(2) Å]. Additionally, OH‐6 participates in a weak hydrogen bond to the anomeric oxygen [H···O distance of 2.19(3) Å]. The crystalline methyl αd‐mannofuranoside adopts an 3 E ring conformation. The analysis of 13C CPMAS NMR chemical shifts for solid methyl αd‐mannofuranoside confirm such H‐bonding pattern.  相似文献   

5.
The title compound, [Ni(NCS)2(C5H4N4O)2(H2O)2], crystallizes in the triclinic space group P. The molecular unit contains two neutral mol­ecules of 4,5‐di­hydro‐1,2,4‐triazolo[1,5‐a]­pyrimidin‐5‐one (5HtpO) coordinated through the N atom in position 3, two thio­cyanate ligands coordinated through their N atoms and two water mol­ecules completing an octahedral environment around the NiII ion, which lies on a centre of inversion. The structure is stabilized by hydrogen bonding. Distances in the coordination sphere are Ni—N3(5HtpO) 2.132 (2), Ni—O(water) 2.085 (2) and Ni—N(thio­cyanato) 2.040 (2) Å.  相似文献   

6.
A series of neutral Ni(II)-salicylaldiminato complexes substituted with perfluorooctyl- and trifluoromethyl groups, [Ni{kappa(2)-N,O-6-C(H)==NAr-2,4-R'(2)C(6)H(2)O}(Me)(pyridine)] (6 a: Ar=2,6-{4-(F(17)C(8))C(6)H(4)}(2)C(6)H(3), R'=I; 6 b: Ar=2,6-{4-(F(3)C)C(6)H(4)}(2)C(6)H(3), R'=I; 6 c: Ar=2,6-{3,5-(F(3)C)(2)C(6)H(3)}(2)C(6)H(3), R'=3,5-(F(3)C)(2)C(6)H(3); 6 d: Ar=2,6-{4-(F(17)C(8))C(6)H(4)}(2)C(6)H(3), R'=3,5-(F(3)C)(2)C(6)H(3); 6 e: Ar=2,6-{3,5-(F(3)C)(2)C(6)H(3)}(2)C(6)H(3), R'=I) were studied as catalyst precursors for ethylene polymerisation in supercritical CO(2). Catalyst precursors 6 a and 6 c, which are soluble in scCO(2), afford the highest polymer yields, corresponding to 2 x 10(3) turnovers. Semicrystalline polyethylene (M(n) typically 10(4) g mol(-1)) is obtained with variable degrees of branching (11 to 24 branches per 1000 carbon atoms, predominantly Me branches) and crystallinities (54 to 21 %), depending on the substitution pattern of the catalyst.  相似文献   

7.
Under acetylating conditions racemic thioflavanone thiosemicarbazones cyclize into racemic 3‐acetyl‐spiro[1,3,4‐thiadiazoline‐2,4′‐thioflavans] and a racemic 3‐acetylspiro[1,3,4‐oxadiazoline‐2,4′‐thioflavan] with trans O(1) or S(1) and Ph(2′eq). Hindered rotation of the endocyclic N(3) acetyl group spirothia‐diazolines caused the formation of isomers separable by HPLC. X‐ray diffraction analyses, 1H‐, 13C‐, and 15N NMR measurements as well as MOPAC QM calculations were performed to reveal the structures of these isomers.  相似文献   

8.
1 INTRODUCTIONCoordination compounds with 1 ,2 ,4 triazole as a ligand have interesting fea tures,notonly because ofthe very interesting magnetic propertiesofthese complex es,but also because ofrich modes ofcoordination〔1〕.Particularly,the coordinationbehavioroftriazoletowardsa numberoftransition metalthiocyanatesshowsremark abledifferences〔2 - 6〕.On unsubstitution at N4 ,thetriazole ring hasmonodentate,1 ,2 and 2 ,4 bridging forms.These three modes were all observed in the Ni( II)…  相似文献   

9.

Electrophilic trisubstituted ethylene monomers, halogen ring‐disubstituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H3CH?C(CN)CON(CH3)2 (where R is 2,3‐dichloro, 2,4‐dichloro, 2,6‐dichloro, 3,4‐dichloro, 3,5‐dichloro, 2,3‐difluoro, 2,4‐difluoro, 2,6‐difluoro, 3,4‐difluoro, 3,5‐difluoro), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

10.
1INTRODUCTIONThedevelopmentofhighlyefficientnonlinearoptical(NLO)crystalsforvisibleandultraviolet(UV)regionsisextremelyimportantforbothlaserspectroscopyandlaserprocessing.Themainmeritsoforganicmaterialscomparedwithinorganiconesforsuchsecond-harmonicgenera…  相似文献   

11.
3,5-吡啶二羧酸镍配位聚合物的合成与晶体结构   总被引:2,自引:0,他引:2  
采用水热法合成了3个新的3,5-吡啶二羧酸镍配位聚合物[Ni(3,5-Pydc)(H2O)4·H2O]n(1), [Ni2(3,5-Pydc)2(H2O)8·(H2O)2]n(2)和[Ni(3,5-Pydc)(H2O)2]n(3), 并通过X射线单晶衍射、FTIR及热重分析对其结构和组成进行了表征. 单晶衍射结果表明, 化合物1和2是一维折线型链状结构, 而化合物3是二维层状结构. 化合物1是由3,5-Pydc配体将中心镍离子连接起来形成的折线型一维链. 在化合物2中存在着两条各自独立的折线型一维链, 但它们的配位方式却完全相同, 每一条链都是由3,5-Pydc配体将镍离子连接而成. 而化合物3则是由3个镍离子和3个3,5-Pydc配体形成的二十元环构成的二维网格. 3个化合物分别通过链间或层间氢键作用(O-H…O)形成三维超分子结构, 化合物1和2中的客体水分子被氢键限域在超分子结构之中.  相似文献   

12.
Binuclear NiII dithiocarbamates, with aromatic monothiols as bridging ligands, of composition [Ni(-L) (Rdtc)]2 [dtc = S2CN, R = C4H8O (morph), C5H10 (pip), C4H8 (pld); HL = thiophenol, 4-methylthiophenol or 2-thionaphthol] and [Ni(-L)(HR1dtc)]2 {R1 = C11H11N2O (aap)} have been prepared and characterized by elemental analyses, i.r. and electron spectroscopy, magnetochemical and conductivity measurements, and thermal analysis. The methods used indicate that the complexes are diamagnetic, complex non-electrolytes with two square-planar NiS4 chromophores.  相似文献   

13.
The adduct 1,6‐di­amino­hexane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2) is a salt {hexane‐1,6‐diyldiammonium–4‐[1,1‐bis(4‐hydroxyphenyl)ethyl]phenolate (1/2)}, C6H18N22+·2C20H17O3?, in which the cation lies across a centre of inversion in space group P. The anions are linked by two short O—H?O hydrogen bonds [H?O 1.74 and 1.76 Å, O?O 2.5702 (12) and 2.5855 (12) Å, and O—H?O 168 and 169°] into a chain containing two types of R(24) ring. Each cation is linked to four different anion chains by three N—H?O hydrogen bonds [H?O 1.76–2.06 Å, N?O 2.6749 (14)–2.9159 (14) Å and N—H?O 156–172°]. In the adduct 2,2′‐bipyridyl–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C10H8N2·2C20H18O3, the neutral di­amine lies across a centre of inversion in space group P21/n. The tris­(phenol) mol­ecules are linked by two O—H?O hydrogen bonds [H?O both 1.90 Å, O?O 2.7303 (14) and 2.7415 (15) Å, and O—H?O 173 and 176°] into sheets built from R(38) rings. Pairs of tris­(phenol) sheets are linked via the di­amine by means of a single O—H?N hydrogen bond [H?N 1.97 Å, O?N 2.7833 (16) Å and O—H?N 163°].  相似文献   

14.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

15.
Intramolecular H‐atom transfer in model peptide‐type radicals was investigated with high‐level quantum‐chemistry calculations. Examination of 1,2‐, 1,3‐, 1,5‐, and 1,6[C ? N]‐H shifts, 1,4‐ and 1,7[C ? C]‐H shifts, and 1,4[N ? N]‐H shifts (Scheme 1), was carried out with a number of theoretical methods. In the first place, the performance of UB3‐LYP (with the 6‐31G(d), 6‐31G(2df,p), and 6‐311+G(d,p) basis sets) and UMP2 (with the 6‐31G(d) basis set) was assessed for the determination of radical geometries. We found that there is only a small basis‐set dependence for the UB3‐LYP structures, and geometries optimized with UB3‐LYP/6‐31G(d) are generally sufficient for use in conjunction with high‐level composite methods in the determination of improved H‐transfer thermochemistry. Methods assessed in this regard include the high‐level composite methods, G3(MP2)‐RAD, CBS‐QB3, and G3//B3‐LYP, as well as the density‐functional methods B3‐LYP, MPWB1K, and BMK in association with the 6‐31+G(d,p) and 6‐311++G(3df,3pd) basis sets. The high‐level methods give results that are close to one another, while the recently developed functionals MPWB1K and BMK provide cost‐effective alternatives. For the systems considered, the transformation of an N‐centered radical to a C‐centered radical is always exothermic (by 25 kJ ? mol?1 or more), and this can lead to quite modest barrier heights of less than 60 kJ ? mol?1 (specifically for 1,5[C ? N]‐H and 1,6[C ? N]‐H shifts). H‐Migration barriers appear to decrease as the ring size in the transition structure (TS) increases, with a lowering of the barrier being found, for example when moving from a rearrangement proceeding via a four‐membered‐ring TS (e.g., the 1,3[C ? N]‐H shift, CH3? C(O)? NH..CH2? C(O)? NH2) to a rearrangement proceeding via a six‐membered‐ring TS (e.g., the 1,5[C ? N]‐H shift, .NH? CH2? C(O)? NH? CH3 → NH2? CH2? C(O)? NH? CH2.).  相似文献   

16.
A metal-organic pillared bilayer open framework having 3D channels, [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).6C(5)H(5)N.36H(2)O (BOF-1, 1), has been assembled from bismacrocyclic nickel(II) complex [Ni(2)(C(26)H(52)N(10))(Cl)(4)].H(2)O and sodium 1,3,5-benzenetricarboxylate (Na(3)BTC). The channels are occupied by pyridine and water guest molecules. When the single crystal of 1 was dried in air and then heated at 75 degrees C for 1.5 h, respectively, [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).30H(2)O (1') and [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).4H(2)O (2) resulted with retention of the single crystallinity. The X-ray structures reveal spongelike dynamic behavior of the bilayer framework that reduces the interlayer distance in response to the amount of guest molecules. Solid 2 differentiates various alcohols. When 1 was immersed in pyridine and benzene, guest molecules were exchanged with retention of the single-crystal nature to give rise to [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).20pyridine.6H(2)O (3) and [Ni(2)(C(26)H(52)N(10))](3)[BTC](4).14benzene.19H(2)O (4), respectively. Furthermore, crystal 1 reacted with I(2) via single-crystal-to-single-crystal transformation to produce [Ni(2)(C(26)H(52)N(10))](3)[C(9)H(3)O(6)](4)(I(3))(4).nI(2).17H(2)O (5) that consists of positively charged framework incorporating nickel(III) and nickel(II) ions and the channels including I(3)(-) and I(2).  相似文献   

17.
The hydrogen bonding interaction of formic acid-, formaldehyde-, formylfluoride-nitrosyl hydride complexes was investigated by the density functional theory (DFT) and ab inito method in conjunction with 6-311++G(2d,2p) basis set. The geometries, vibrational frequencies and interaction energies of the complexes were calculated by both standard and CP-corrected methods respectively. Moreover, G3B3 method was employed to estimate the interaction energies. There are C--H…O, N--H…O, N--H…F blue-shifted H-bonds and red-shifted O----H…O H-bond in the complexes. Electron density redistribution and rehybridization contribute to the N--H and C--H blue shifts. All geometric reorganizations contribute to the N--H blue shifts and partial geometric reorganizations contribute to the C--H blue shifts. The geometric reorganizations of the complex C except ZH(5)-O(4)-C(1) contribute to the O----H red shift. For the N--H blue shifts, the effect of r(N--O) variation on the N--H blue shifts is larger than that of ZH-N-O variation. Rehybridization plays a dominant role in the degree of N--H blue shifts, whereas the electron density redistribution contributes more to the degree of C--H blue shifts than the other effects do.  相似文献   

18.
In the Buchwald-Hartwig reaction between HIPTBr (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3 = hexaisopropylterphenyl) and (H2NCH2CH2)3N, it is possible to obtain a 65% isolated yield of (HIPTNHCH2CH2)2NCH2CH2NH2. A second coupling then can be carried out to yield a variety of "hybrid" ligands, (HIPTNHCH2CH2)2NCH2CH2NHAr, where Ar = 3,5-Me2C6H3, 3,5-(CF3)2C6H3, 3,5-(MeO)2C6H3, 3,5-Me2NC5H3, 3,5-Ph2NC5H3, 2,4,6-i-Pr3C6H2, or 2,4,6-Me3C6H2. The hybrid ligands may be attached to Mo to yield [hybrid]MoCl species. From the monochloride species, a variety of other species such as [hybrid]MoN, {[hybrid]MoN2}Na, and {[hybrid]Mo(NH3)}+ can be prepared. [Hybrid]MoN2 species were prepared through oxidation of {[hybrid]MoN2}Na species with ZnCl2, but they could not be isolated. [Hybrid]Mo=N-NH species could be observed as a consequence of the protonation of {[hybrid]MoN2}- species, but they too could not be isolated as a consequence of a facile decomposition to yield dihydrogen and [hybrid]MoN2 species. Attempts to reduce dinitrogen catalytically led to little or no ammonia being formed from dinitrogen. The fact that no ammonia was formed from dinitrogen in the case of Ar = 3,5-Me2C6H3, 3,5-(CF3)2C6H3, or 3,5-(MeO)2C6H3 could be attributed to a rapid decomposition of intermediate [hybrid]Mo=N-NH species in the catalytic reaction, a decomposition that was shown in separate studies to be accelerated dramatically by 2,6-lutidine, the conjugate base of the acid employed in the attempted catalytic reduction. X-ray structures of [(HIPTNHCH2CH2)2NCH2CH2N{3,5-(CF3)2C6H3}]MoCl and [(HIPTNHCH2CH2)2NCH2CH2N(3,5-Me2C6H3)]MoN2}Na(THF)2 are reported.  相似文献   

19.
The blue‐shifted and red‐shifted H‐bonds have been studied in complexes CH3CHO…HNO. At the MP2/6‐31G(d), MP2/6‐31+G(d,p) MP2/6‐311++G(d,p), B3LYP/6‐31G(d), B3LYP/6‐31+G(d,p) and B3LYP/6‐311++G(d,p) levels, the geometric structures and vibrational frequencies of complexes CH3CHO…HNO are calculated by both standard and CP‐corrected methods, respectively. Complex A exhibits simultaneously red‐shifted C? H…O and blue‐shifted N? H…O H‐bonds. Complex B possesses simultaneously two blue‐shifted H‐bonds: C? H…O and N? H…O. From NBO analysis, it becomes evident that the red‐shifted C? H…O H‐bond can be explained on the basis of the two opposite effects: hyperconjugation and rehybridization. The blue‐shifted C? H…O H‐bond is a result of conjunct C? H bond strengthening effects of the hyperconjugation and the rehybridization due to existence of the significant electron density redistribution effect. For the blue‐shifted N? H…O H‐bonds, the hyperconjugation is inhibited due to existence of the electron density redistribution effect. The large blue shift of the N? H stretching frequency is observed because the rehybridization dominates the hyperconjugation. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

20.
孟祥茹  徐虹  潘彦  侯红卫 《结构化学》2003,22(3):359-362
采用水热法用Ni(NO3)26H2O和异烟酸制备出了一种新的由配合物形成的三维超分子体系—[Ni(C6H4O2N)2(H2O)4],并通过X射线衍射对其晶体结构进行了测定。 该晶体属三斜晶系,空间群为Pī, 所得晶胞参数为: a = 6.9228(4), b = 9.6664(19),c = 6.322(1) , a = 96.86(3), b = 113.33(3), g = 110.35(3)°, V = 347.6(1) 3, Z = 1, Mr = 374.98, Dc = 1.791 g/cm3, F(000) = 194, m = 1.443 mm-1。用1362个可观察的 (I > 2s(I))衍射点,修正123个结构参数, 最终偏离因子R = 0.0444,wR = 0.1271。在组成该化合物的基本结构单元[Ni(C6H4O2N)2(H2O)4]中,Ni处于1个稍微拉长的八面体的中心; 各个结构单元之间通过氢键OH…O相互连接,形成了无限伸展的具有层状结构的三维超分子体系。 另外,从差热及热重曲线可以看出,该化合物加热到154 ℃时开始分解, 首先失去4个H2O,再失去2个异烟酸根,最后残余物为NiO。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号