首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
JB Wacker  I Lignos  VK Parashar  MA Gijs 《Lab on a chip》2012,12(17):3111-3116
We study the droplet-based synthesis of fluorescent silica nanoparticles (50-350 nm size) in a microfluidic chip. Fluorescein-isothiocyanate (FITC) dye is first chemically linked to aminopropyl triethoxysilane (APTES) in ethanol and this reaction product is subsequently mixed with tetraethyl orthosilicate (TEOS) to yield a fluorescent silicon alkoxide precursor solution. The latter reacts with an aqueous ethanol-ammonia hydrolysing mixture inside droplets, forming fluorescent silica nanoparticles. The droplets are obtained by pinching-off side-by-side flowing streams of alkoxide solution/hydrolysing mixture on a microfluidic chip using a Fluorinert oil continuous phase flow. Synthesis in droplets leads to a faster reaction and allows drastically improved nanoparticle size uniformity (down to 3% relative standard deviation for 350 nm size particles) when compared to conventional bulk synthesis methods, thanks to the precise control of reagent concentrations and reaction times offered by the microfluidic format. Incorporating FITC inside silica nanoparticles using our method leads to reduced dye leakage and increases the dye's stability, as evidenced by a reduced photochemical bleaching compared to a pure FITC solution.  相似文献   

2.
Millisecond kinetics on a microfluidic chip using nanoliters of reagents   总被引:2,自引:0,他引:2  
This paper describes a microfluidic chip for performing kinetic measurements with better than millisecond resolution. Rapid kinetic measurements in microfluidic systems are complicated by two problems: mixing is slow and dispersion is large. These problems also complicate biochemical assays performed in microfluidic chips. We have recently shown (Song, H.; Tice, J. D.; Ismagilov, R. F. Angew. Chem., Int. Ed. 2003, 42, 768-772) how multiphase fluid flow in microchannels can be used to address both problems by transporting the reagents inside aqueous droplets (plugs) surrounded by an immiscible fluid. Here, this droplet-based microfluidic system was used to extract kinetic parameters of an enzymatic reaction. Rapid single-turnover kinetics of ribonuclease A (RNase A) was measured with better than millisecond resolution using sub-microliter volumes of solutions. To obtain the single-turnover rate constant (k = 1100 +/- 250 s(-1)), four new features for this microfluidics platform were demonstrated: (i) rapid on-chip dilution, (ii) multiple time range access, (iii) biocompatibility with RNase A, and (iv) explicit treatment of mixing for improving time resolution of the system. These features are discussed using kinetics of RNase A. From fluorescent images integrated for 2-4 s, each kinetic profile can be obtained using less than 150 nL of solutions of reagents because this system relies on chaotic advection inside moving droplets rather than on turbulence to achieve rapid mixing. Fabrication of these devices in PDMS is straightforward and no specialized equipment, except for a standard microscope with a CCD camera, is needed to run the experiments. This microfluidic platform could serve as an inexpensive and economical complement to stopped-flow methods for a broad range of time-resolved experiments and assays in chemistry and biochemistry.  相似文献   

3.
We present an integrated circuit/microfluidic chip that traps and moves individual living biological cells and chemical droplets along programmable paths using dielectrophoresis (DEP). Our chip combines the biocompatibility of microfluidics with the programmability and complexity of integrated circuits (ICs). The chip is capable of simultaneously and independently controlling the location of thousands of dielectric objects, such as cells and chemical droplets. The chip consists of an array of 128 x 256 pixels, 11 x 11 microm(2) in size, controlled by built-in SRAM memory; each pixel can be energized by a radio frequency (RF) voltage of up to 5 V(pp). The IC was built in a commercial foundry and the microfluidic chamber was fabricated on its top surface at Harvard. Using this hybrid chip, we have moved yeast and mammalian cells through a microfluidic chamber at speeds up to 30 microm sec(-1). Thousands of cells can be individually trapped and simultaneously positioned in controlled patterns. The chip can trap and move pL droplets of water in oil, split one droplet into two, and mix two droplets into one. Our IC/microfluidic chip provides a versatile platform to trap and move large numbers of cells and fluid droplets individually for lab-on-a-chip applications.  相似文献   

4.
H Zec  TD Rane  TH Wang 《Lab on a chip》2012,12(17):3055-3062
We propose a highly versatile and programmable nanolitre droplet-based platform that accepts an unlimited number of sample plugs from a multi-well plate, performs digitization of these sample plugs into smaller daughter droplets and subsequent synchronization-free, robust injection of multiple reagents into the sample daughter droplets on-demand. This platform combines excellent control of valve-based microfluidics with the high-throughput capability of droplet microfluidics. We demonstrate the functioning of a proof-of-concept device which generates combinatorial mixture droplets from a linear array of sample plugs and four different reagents, using food dyes to mimic samples and reagents. Generation of a one dimensional array of the combinatorial mixture droplets on the device leads to automatic spatial indexing of these droplets, precluding the need to include a barcode in each droplet to identify its contents. We expect this platform to further expand the range of applications of droplet microfluidics to include applications requiring a high degree of multiplexing as well as high throughput analysis of multiple samples.  相似文献   

5.
The primary requirement for a mixing operation in droplet-based microfluidic devices is an accurate pairing of droplets of reaction fluids over an extended period of time. In this paper, a novel device for self-synchronous production of droplets has been demonstrated. The device uses a change in impedance across a pair of electrodes introduced due to the passage of a pre-formed droplet to generate a second droplet at a second pair of electrodes. The device was characterised using image analysis. Droplets with a volume of ~23.5 ± 3.1 nl (i.e.~93% of the volume of pre-formed droplets) were produced on applying a voltage of 500 V. The synchronisation efficiency of the device was 83%. As the device enables self-synchronised production of droplets, it has a potential to increase the reliability and robustness of mixing operations in droplet-based microfluidic devices.  相似文献   

6.
The integration and release of reagents in microfluidics as used for point-of-care testing is essential for an easy and accurate operation of these promising diagnostic devices. Here, we present microfluidic functional structures, which we call reagent integrators (RIs), for integrating and releasing small amounts of dried reagents (ng quantities and less) into microlitres of sample in a capillary-driven microfluidic chip. Typically, a RI is less than 1 mm(2) in area and has an inlet splitting into a central reagent channel, in which reagents can be loaded using an inkjet spotter, and two diluter channels. During filling of the microfluidic chip, spotted reagents reconstitute and exit the RI with a dilution factor that relates to the relative hydraulic resistance of the channels forming the RI. We exemplify the working principle of RIs by (i) distributing ~100 pg of horseradish peroxidase (HRP) in different volume fractions of a 1 μL solution containing a fluorogenic substrate for HRP and (ii) performing an immunoassay for C-reactive protein (CRP) using 450 pg of fluorescently labeled detection antibodies (dAbs) that reconstitute in ~5 to 30% of a 1 μL sample of human serum. RIs preserve the conceptual simplicity of lateral flow assays while providing a great degree of control over the integration and release of reagents in a stream of sample. We believe RIs to be broadly applicable to microfluidic devices as used for biological assays.  相似文献   

7.
Surfactants in droplet-based microfluidics   总被引:1,自引:0,他引:1  
Baret JC 《Lab on a chip》2012,12(3):422-433
Surfactants are an essential part of the droplet-based microfluidic technology. They are involved in the stabilization of droplet interfaces, in the biocompatibility of the system and in the process of molecular exchange between droplets. The recent progress in the applications of droplet-based microfluidics has been made possible by the development of new molecules and their characterizations. In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of 'standard' surfactants. Emulsion properties and interfacial rheology of surfactant-laden layers strongly determine the overall capabilities of the technology. Dynamic properties of droplets, interfaces and emulsions are therefore very important to be characterized, understood and controlled. In this respect, microfluidic systems themselves appear to be very powerful tools for the study of surfactant dynamics at the time- and length-scale relevant to the corresponding microfluidic applications. More generally, microfluidic systems are becoming a new type of experimental platform for the study of the dynamics of interfaces in complex systems.  相似文献   

8.
Moon H  Wheeler AR  Garrell RL  Loo JA  Kim CJ 《Lab on a chip》2006,6(9):1213-1219
To realize multiplexed sample preparation on a digital microfluidic chip for high-throughput Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), several fluidic functions need to be integrated. These include the generation of multiple droplets from a reservoir and parallel in-line sample purification. In this paper, we develop two critical new functions in handling protein solutions and standard proteomic reagents with electrowetting-on-dielectric (EWOD) actuation, leading to an integrated chip for multiplexed sample preparation for MALDI-MS. The first is a voltage sequence designed to generate a series of droplets from each of the three reservoirs--proteomic sample, rinsing fluid, and MALDI reagents. It is the first time that proteomic reagents have been dispensed using EWOD in an air (as opposed to oil) environment. The second is a box-in-box electrode pattern developed to allow droplet passing over dried sample spots, making the process of in-line sample purification robust for parallel processing. As a result, parallel processing of multiple sample droplets is demonstrated on the integrated EWOD-MALDI-MS chip, an important step towards high-throughput MALDI-MS. The MS results, collected directly from the integrated devices, are of good quality, suggesting that the tedious process of sample preparation can be automated on-chip for MALDI-MS applications as well as other high-throughput proteomics applications.  相似文献   

9.
Recently, chemical operations with microfluidic devices, especially droplet-based operations, have attracted considerable attention because they can provide an isolated small-volume reaction field. However, analysis of these operations has been limited mostly to aqueous-phase reactions in water droplets due to device material restrictions. In this study, we have successfully demonstrated droplet formation of five common organic solvents frequently used in chemical synthesis by using a simple silicon/glass-based microfluidic device. When an immiscible liquid with surfactant was used as the continuous phase, the organic solvent formed droplets similar to water-in-oil droplets in the device. In contrast to conventional microfluidic devices composed of resins, which are susceptible to swelling in organic solvents, the developed microfluidic device did not undergo swelling owing to the high chemical resistance of the constituent materials. Therefore, the device has potential applications for various chemical reactions involving organic solvents. Furthermore, this droplet generation device enabled control of droplet size by adjusting the liquid flow rate. The droplet generation method proposed in this work will contribute to the study of organic reactions in microdroplets and will be useful for evaluating scaling effects in various chemical reactions.  相似文献   

10.
Droplet microfluidics   总被引:15,自引:0,他引:15  
Teh SY  Lin R  Hung LH  Lee AP 《Lab on a chip》2008,8(2):198-220
Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of "digital fluidic" operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as microreactors ranging from the nano- to femtoliter range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. This review will focus on the various droplet operations, as well as the numerous applications of the system. Due to advantages unique to droplet-based systems, this technology has the potential to provide novel solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.  相似文献   

11.
A droplet-based electrochemical digital magnetofluidics system has been developed. The system relies on the magnetic movement, in air, of different aqueous microdroplets containing magnetic microparticles--serving as the 'sample', 'blank', 'wash' and 'reagent' solutions--into and out of a three-electrode assembly. The movement of all droplets was controlled using the magnetic fields generated by three separate external magnets positioned below the superhydrophobic surface. Square-wave voltammetry was used for rapid measurements of dopamine in multiple successive microdrops with minimal cross talk. The ability of the droplet-based electrochemical microfluidic system to manipulate microliter solutions was also illustrated in bioassays of glucose, involving the merging of enzyme (GOx) and substrate droplets, followed by chronoamperometric measurements of the hydrogen peroxide product in the merged droplet. Variables of the new electrochemical digital magnetomicrofluidic technique were examined and optimized. The new droplet-based electrochemical microfluidic system offers a promising platform for automated clinical diagnostics and drug discovery.  相似文献   

12.
This paper characterizes the conditions required to form nanoliter-sized droplets (plugs) of viscous aqueous reagents in flows of immiscible carrier fluid within microfluidic channels. For both non-viscous (viscosity of 2.0 mPa s) and viscous (viscosity of 18 mPa s) aqueous solutions, plugs formed reliably in a flow of water-immiscible carrier fluid for Capillary number less than 0.01, although plugs were able to form at higher Capillary numbers at lower ratios of the aqueous phase flow rate to the flow rate of the carrier fluid (in all the experiments performed, the Reynolds number was less than 1). The paper also shows that combining viscous and non-viscous reagents can enhance mixing in droplets moving through straight microchannels by providing a nearly ideal initial distribution of reagents within each droplet. The study should facilitate the use of this droplet-based microfluidic platform for investigation of protein crystallization, kinetics, and assays.  相似文献   

13.
综述了近年来清除试剂在液相组合化学中的应用,并介绍了一些采用清除试剂对液相化合物库进行分离和纯化的实例。对清除试剂进行了分类,各类清除试剂参与的液相反应以及被清除的非目标产物类型也作了相应的介绍。  相似文献   

14.
This paper reports a plug-based, microfluidic method for performing multi-step chemical reactions with millisecond time-control. It builds upon a previously reported method where aqueous reagents were injected into a flow of immiscible fluid (fluorocarbons)(H. Song et al., Angew. Chem. Int. Ed., 2003, 42, 768). The aqueous reagents formed plugs--droplets surrounded and transported by the immiscible fluid. Winding channels rapidly mixed the reagents in droplets. This paper shows that further stages of the reaction could be initiated by flowing additional reagent streams directly into the droplets of initial reaction mixture. The conditions necessary for an aqueous stream to merge with aqueous droplets were characterized. The Capillary number could be used to predict the behavior of the two-phase flow at the merging junction. By transporting solid reaction products in droplets, the products were kept from aggregating on the walls of the microchannels. To demonstrate the utility of this microfluidic method it was used to synthesize colloidal CdS and CdS/CdSe core-shell nanoparticles.  相似文献   

15.
Pan X  Zeng S  Zhang Q  Lin B  Qin J 《Electrophoresis》2011,32(23):3399-3405
This work describes a novel droplet-based microfluidic device, which enables sequential droplet processing for rapid DNA extraction. The microdevice consists of a droplet generation unit, two reagent addition units and three droplet splitting units. The loading/washing/elution steps required for DNA extraction were carried out by sequential microfluidic droplet processing. The movement of superparamagnetic beads, which were used as extraction supports, was controlled with magnetic field. The microdevice could generate about 100 droplets per min, and it took about 1 min for each droplet to perform the whole extraction process. The extraction efficiency was measured to be 46% for λ-DNA, and the extracted DNA could be used in subsequent genetic analysis such as PCR, demonstrating the potential of the device for fast DNA extraction.  相似文献   

16.
Wang W  Huang Y  Liu J  Xie Y  Zhao R  Xiong S  Liu G  Chen Y  Ma H 《Lab on a chip》2011,11(5):929-935
A novel integrated continuous-flow microfluidic system was designed and fabricated for solid phase peptide synthesis (SPPS) using conventional reactants. The microfluidic system was composed of a glass-based radial reaction chip, a diffluent chip, amino acid feeding reservoirs and continuous-flow reagent pathways. A tri-row cofferdam-fence structure was designed for solid phase supports trapping. Highly cross-linked, porous and high-loading 4-(hydroxymethyl)phenoxymethyl polystyrene (HMP) beads were prepared for microfluidic SPPS. The transfer losses, hazardous handling and time-consuming processes in traditional peptide cleavage steps were avoided by being replaced with the on-chip cleavage treatment. Six peptides from an antibody affinity peptide library against β-endorphin with different lengths and sequences were obtained simultaneously on the constructed continuous-flow microfluidic system within a short time. This microfluidic system is automatic, integrated, effective, low-cost, recyclable and environment-friendly for not only SPPS but also other solid phase chemical syntheses.  相似文献   

17.
18.
基于毛细管液滴技术,建立了提取血液中乙型肝炎病毒(HBV)DNA的方法.方法的基本原理是向聚四氟乙烯毛细管中连续引人油相和水相溶液时,由于表面张力作用,可以形成稳定的油包水型液滴.依次引人含有不同试样的液滴,在毛细管中完成进样、DNA结合、洗涤以及洗脱等过程.实验表明,采用蛋白酶K裂解和提高洗脱温度有利于提高DNA回收...  相似文献   

19.
We demonstrate the integration of a droplet-based microfluidic device with high performance liquid chromatography (HPLC) in a monolithic format. Sequential operations of separation, compartmentalisation and concentration counter were conducted on a monolithic chip. This describes the use of droplet-based microfluidics for the preservation of chromatographic separations, and its potential application as a high frequency fraction collector.  相似文献   

20.
A rapid and highly sensitive CE immunoassay method integrating mixing, reaction, separation, and detection on-chip is described for the measurement of alpha-fetoprotein (AFP), a liver cancer marker in blood. Antibody-binding reagents, consisting of 245-bp DNA coupled anti-AFP WA1 antibody (DNA-WA1) and HiLyte dye-labeled anti-AFP WA2 antibody (HiLyte-WA2), and AFP-containing sample were filled into adjacent zones of a chip channel defined by the laminar flow lines of the microfluidic device using pressure-driven flow. The channel geometry was thus used to quantitatively aliquot the reagents and sample into the chip. DNA-WA1 was electrokinetically concentrated in the channel and sequentially transported through the AFP-sample zone and HiLyte-WA2 zone by ITP in such a manner that the AFP sandwich immune complex formation took place in the sample and HiLyte-WA2 zones. The sandwich AFP immune complex was then detected by LIF after CGE in a separation channel that was arranged downstream of the reaction channel. AFP was detected within 136 s with a detection sensitivity of 5 pM. The on-chip immunoassay described here, applying ITP concentration, in-channel reaction, and CGE separation, has the potential of providing a rapid and sensitive method for both clinical and research applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号