首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-nm BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.  相似文献   

2.
骆杨  段羽  陈平  臧春亮  谢月  赵毅  刘式墉 《物理学报》2012,61(14):147801-147801
材料的迁移率是其关键电学特性之一.有机材料迁移率的研究对于有机电致发光器件、 有机太阳电池、有机薄膜场效应晶体管性能的提高有重要的意义. 应用简单易行的空间电荷限制电流方法,对基于三(8-羟基喹啉)铝(Alq3) 的四种单载流子器件电流密度-电压曲线特性进行研究, 根据空间电荷限制电流模型,拟合出Alq3材料在四种器件中的零场电子迁移率和电场依赖因子,并且给出Alq3电子迁移率随外加偏压的变化趋势. 实验结果表明,顶电极铝蒸镀到缓冲层氟化锂(1 nm)和Alq3 (100 nm)的表面后, 可以明显改善Alq3的零场迁移率和电场依赖因子. 认为产生这种现象的原因是氟化锂可以使铝和Alq3发生络合反应, 形成Li+1Alq-1粒子,形成良好的欧姆接触,使得电子的注入效率大大提高.  相似文献   

3.
《Current Applied Physics》2001,1(2-3):139-143
We fabricated organic photovoltaic cells using poly[2-methoxy,5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and fullerene derivative, [6,6]-phenylen C61-butyric acid methyl ester (PCBM), composites with various concentrations of the PCBM. The devices exhibit photoluminescence quenching and enhancement in photovoltaic response with increasing PCBM concentrations, both of which are associated with the photoinduced charge transfer characteristics of these materials. We also investigate the PCBM concentration dependence on the device performance near the percolation threshold for fullerene derivative charge transport channel, and discuss the role of fullerene interpenetrating networks in these organic photovoltaic cells.  相似文献   

4.
邓丽娟  赵谡玲  徐征  赵玲  王林 《物理学报》2016,65(7):78801-078801
将窄带隙聚合物PTB7-Th作为第三种物质掺入到P3HT:PCBM中制备了双给体结构的三元聚合物太阳能电池, 并且通过改变PTB7-Th的浓度来研究PTB7-Th对器件性能的影响. 研究发现, 掺入PTB7-Th后, 聚合物太阳能电池的短路电流和填充因子同时获得了提高, 使器件的光电转换效率得到了改善. 进一步分析表明, PTB7-Th的加入能够拓宽活性层的吸收光谱, 增加活性层吸收的光子数目, 有利于短路电流的提升. PTB7-Th与P3HT之间以电荷转移的形式相互作用, 这种作用方式有利于激子的解离, 从而使器件的填充因子得到了提高.  相似文献   

5.
In an effort to develop hybrid organic solar cells with improved power conversion efficiency (PCE), devices based on poly (3-hexylthiophene) (P3HT):phenyl C61-butyric acid methyl ester (PCBM) active layer and poly (3,4-ethylenedioxythiophene) (PEDOT):poly (styrenesulfonate) (PSS) buffer layers were prepared. A systematic replacement of PCBM was achieved by introducing nanostructured TiO2 (∼15 nm particle size), dissolved separately in chlorobenzene (CB) and 1,2 –dichlorobenzene (DCB), to the (P3HT:PCBM) active layer while keeping a fixed amount for P3HT. To understand the effect of fullerene replacement with the inorganic metal oxide nanoparticles on different properties of resulting devices, a variety of techniques such as Current–Voltage (J–V) characteristics, Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Ultravoilet-Visible (UV–Vis) Spectrophotometry and External Quantum Efficiency (EQE) were employed. The addition of TiO2 nanoparticles in the active layer improved the power conversion efficiency (PCE) of P3HT:PCBM devices. The addition of TiO2 nanoparticles using CB as solvent enhanced the absorption in visible region and also introduced a red shift in the absorption spectra. A significant increase in EQE was observed for devices with TiO2 nanoparticles in the active layer. Mixing TiO2 also increased the surface roughness of the active layer where TiO2 nanoparticles were found to agglomerate as their concentration increased relative to fullerene derivative. A complete agglomeration of TiO2 was observed in the absence of PCBM.  相似文献   

6.
研究了二甲基亚砜(DMSO)掺杂浓度对基于聚(3-己基噻吩)(P3HT)和(6,6)-苯基碳60丁酸甲酯(PCBM)为有源层的聚合物太阳能电池性能影响。结果表明,掺杂DMSO可以提高聚合物太阳能电池短路电流密度和填充因子。DMSO掺杂质量比为3%时,电池短路电流密度提高到7.88 mA·cm-2,填充因子为55.5%。能量转换效率达到2.54%,相比没有掺杂DMSO的电池,能量转换效率提高了17%。傅里叶变换红外光谱被用于鉴定和分析掺杂DMSO对材料P3HT∶PCBM化学性质的影响。傅里叶变换红外光谱表明,掺杂后P3HT和PCBM的化学性质都没有改变。为分析掺杂DMSO改善器件能量转换效率的原因,通过紫外-可见光谱和电流密度-电压特性曲线分别表征器件的光吸收能力以及电致发光器件的载流子迁移率。与P3HT∶PCBM薄膜相比,P3HT∶PCBM∶DMSO薄膜在可见光范围内的吸收峰有明显红移且吸收强度增强。可见光吸收的改善是实现短路电流密度提高的有力保障。太阳能电池性能的增强是因为DMSO的掺杂提高了P3HT∶PCBM的载流子迁移率和吸收光谱宽度。  相似文献   

7.
《Current Applied Physics》2015,15(11):1364-1369
Inverted structure comes out to be a promising alternative for making polymer solar cells (PSC) with high efficiency and long-term stability. Vertically stacked functional layers with planar shapes often suffer contradictions in holding high optical absorption and excellent charge transfer/hindrance capability to construct well performed inverted PSC devices. Here, we give an example of rational control of the thickness of electron transport layer (ETL), hole transport layer (HTL) and organic active layer (OAL) to achieve a synergistic effect on promoting the overall photovoltaic behaviors. With in-depth exploration of the interaction between device performance and layer thickness, we obtain the optimized device ITO/ZnO Ncs (45 nm)/P3HT:PCBM (70 nm)/MoO3 (1 nm)/Ag (70 nm) exhibiting an Voc of 0.63 V, Jsc of 12.52 mA/cm2, FF of 54% and PCE of 4.26%.  相似文献   

8.
姜燕  杨盛谊  张秀龙  滕枫  徐征  侯延冰 《物理学报》2006,55(9):4860-4864
以电子束蒸发的方法制备硒化锌(ZnSe)薄膜,研究了基于ZnSe的有机-无机异质结电致发光器件.在双层器件ITO/ZnSe(50nm)/Alq3(12nm)/Al中看到了峰值位于578nm的ZnSe电致发光,却很难得到单层器件ITO/ZnSe(50—120nm)/Al的电致发光;在此基础上进一步引入有机空穴传输层(HTL),通过改变器件的结构,讨论了ZnSe对有机-无机异质结器件ITO/HTL/ZnSe/Alq3/Al电致发光特性的影响.其电致发光光谱的研究结果证实了ZnSe在器件中的作用:ZnSe既起传输电子的作用,也起到传输空穴的作用,还作为发光层.并对ZnSe的发光机理进行了讨论. 关键词: 硒化锌 有机-无机异质结 电致发光 空穴传输层  相似文献   

9.
制备了ITO/NPB/LiF/Alq3/LiF/Al的器件,测量了该组器件效率和亮度的磁效应.结果表明,在50 mT磁场中,当LiF缓冲层厚度为0.8 nm时,器件的效率最大增加了12.4%,磁致亮度最大变化率17%.同时,制备的磷光器件ITO/NPB/LiF/CBP:6 wt% Ir(ppy)3/BCP/Alq3/ LiF/Al,在50mT磁场作用下,当LiF缓冲层的厚度为0.8 nm时,器件的效率最大增加12.1%.在Alq3 关键词: 有机发光 磁场 效率 磁致亮度  相似文献   

10.
於黄忠  温源鑫 《物理学报》2011,60(3):38401-038401
以MEH-PPV(poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylene vinylene))为电子给体材料, PCBM(1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61)为电子受体材料, 制成了共混体系太阳电池.研究了不同厚度活性层对太阳电池性能的影响.结果表明, 活性层厚度为100 nm时,太阳电池具有最佳性能.活性层厚度的增加,增大了光生电荷的复合,减少了太阳电池的填充因子,从而减少了太阳电 关键词: 太阳电池 厚度 电极 性能  相似文献   

11.
Silver nanospheres (Ag NSs) buffer layers were introduced via a solution casting process to enhance the light absorption in poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) bulk heterojunction organic solar cells. These Ag NSs, as surface plasmons, could increase the optical electric field in the photoactive layer whilst simultaneously improving the light scattering. As a result, this buffer layer improves the light absorption of P3HT:PCBM blend and consequently improves the external quantum efficiency (EQE) of organic solar cells. In this work, different sizes of Ag NSs plasmon‐enhanced layer were investigated, with the aim of optimizing the performance of devices. UV‐vis spectrometer measurement demonstrates that the total optical absorption of P3HT:PCBM blend films in the spectral range of 350–650 nm is increased by ~4 and 6% with incorporation of the 20 and 40 nm Ag NSs, respectively. The Jsc was shown to increase by ~21 and 24% for 20 and 40 nm Ag NSs, respectively. This is due to the extra photogenerated excitons by the plasmonic resonance of Ag NSs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Bulk heterojunction organic solar cells(OSCs) based on the blend of poly(2-methoxy-5(2'-ethyl-hexyloxy)-1,4-phenylenevinylene(MEH-PPV) and [6,6]-phenyl C61 butyric acid methyl ester(PCBM) with different weight ratios(from 1:3 to 1:5) have been fabricated and the effect of annealing treatment on the performance of OSCs has also been studied.Experimental results point to the best optimized doping concentration 1:4 for MEH-PPV:PCBM.Furthermore,it is found that the devices with annealing treatment at 150℃ with ...  相似文献   

13.
Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.  相似文献   

14.
The multilayer organic light-emitting diodes (OLEDs) have been fabricated with a thin alkaline metal chloride layer inserted inside an electron transport layer (ETL), tris (8-hydroxyquinoline) aluminum (Alq3). The alkaline metal chloride layer was inserted inside 60 nm Alq3 at d=0, 10, 20 and 30 nm positions (d is the distance of the interlayer away from the Al cathode). The devices, with alkaline metal chlorides inserted at the Alq3/Al interface, showed electron injection and electroluminescence (EL) intensity improvements. When the alkaline metal chlorides were inserted inside the Alq3 layer at 10, 20 or 30 nm position apart from the Al cathode, both EL intensity and efficiency were enhanced for the devices with a thin potassium chloride (KCl) or rubidium chloride (RbCl) layer. On the contrary, the improvements were not observed for the OLEDs with a thin sodium chloride (NaCl) layer. A proposed insulator buffer layer model is employed to explain these characteristics of the devices.  相似文献   

15.
以MEH-PPV(poly(2-methoxy-5-(2′-ethylhexoxy)-1,4-phenylene vinylene)为电子给体材料(Donor,D), TiO2纳米线为电子受体材料(Acceptor,A),制成了共混体系太阳电池. 从D/A材料共混体系的紫外可见吸收光谱(UV-vis)、光荧光谱(PL)、器件的电荷传输的光导J-V图等方面,分析了MEH-PPV∶TiO2体系器件性能变化的原因. 得出了当在纯MEH-PP 关键词: 太阳电池 聚合物 性能  相似文献   

16.
《Current Applied Physics》2018,18(12):1592-1599
The present study deals with the effect of dual cathode buffer layer (CBL) on the performance of bilayer of 4,4′-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70)-based organic solar cell (OSC) with low donor concentration. OSC devices with CBLs have been fabricated using thermal vapor deposition technique. We report the use of lithium fluoride (LiF) and molybdenum trioxide (MoO3) as CBLs. The insertion of LiF between C70 and aluminium (Al) electrode enhances the power conversion efficiency (PCE) of device from 1.89% to 2.47% but quenching of photogenerated excitons is observed at interface of C70 and LiF layers. Incorporation of MoO3 between LiF and Al electrode further enhances PCE of device to 3.51%. This has also improved the material quality and device properties, by preventing the formation of gap states and diminishing exciton quenching.  相似文献   

17.
Tris-(8-hydroxyquinoline)aluminum (Alq3) is a widely used light emitting material. It is also used as an electron transporting layer in organic light emitting devices (OLEDs). Degradation is, however, a major problem in these devices. The device performance is affected by parameters such as air, moisture and light exposure [1,2]. In this work the effect of photon degradation of Alq3 in air is investigated. Alq3 phosphor powder was synthesized using a co-precipitation method and recrystalized in acetone. The structure of the sample was determined by using x-ray diffraction (XRD). The averaging particle size estimated from the broadened XRD peaks using Scherrer's equation was 40±4 nm in diameter. The excitation photoluminescence data that was collected correspond well to the absorption data. To study the photon degradation, the sample was irradiated with an UV lamp for ∼330h. The emission data was collected and the change in photoluminescence intensity with time was monitored.  相似文献   

18.
High efficiency red organic light-emitting devices (OLEDs) with several dotted-line doped layers (DLDLs) were fabricated by using an ultra-high vacuum organic molecular-beam deposition system. The red OLEDs consisted of indium-tin-oxide (ITO)/N, N′-diphenyl-N, N′-bis(1-naphthyl)-(1, 1′-biphenyl)-4, 4′-diamine (α-NPD): 40 nm/tris(8-hydroxyquinoline)aluminum (Alq3)+4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetra-methyljuloldyl-9-enyl)-4H-pyran (DCJTB); 3%wt.: x nm/(Alq3+DCJTB; 3%wt./ Alq3)n−1: (30−x) nm/ Alq3: 30 nm/Mg:Ag with n of 2, 4, 6, or 8, and x=30/(2n−1). The luminance yield of the device with 8 DLDLs was 75% higher than that of the device with a common doped layer. This was attributed to more formation of the excitons formed in a wider region resulting from the existence of the DLDLs. The dominant mechanisms of the dopant emission for the devices with DLDLs were described on the basis of the sequential carrier trapping process.  相似文献   

19.
In a device structure of ITO/hole-injection layer/N,N′-biphenyl-N,N′-bis-(1-naphenyl)-[1,1′-biphthyl]4,4′-diamine(NPB)/tris(8-hydroxyquinoline)aluminum(Alq3)/Al, we investigated the effect of the hole-injection layer on the electrical characteristics and external quantum efficiency of organic light-emitting diodes. Thermal evaporation was performed to make a thickness of NPB layer with a rate of 0.5–1.0 Å/s at a base pressure of 5 × 10−6 Torr. We measured current–voltage characteristics and external quantum efficiency with a thickness variation of the hole-injection layer. CuPc and PVK buffer layers improve the performance of the device in several aspects, such as good mechanical junction, reducing the operating voltage, and energy band adjustment. Compared with devices without a hole-injection layer, we found that the optimal thickness of NPB was 20 nm in the device structure of ITO/NPB/Alq3/Al. By using a CuPc or PVK buffer layer, the external quantum efficiencies of the devices were improved by 28.9% and 51.3%, respectively.  相似文献   

20.
In this study, P3HT:PCBM organic photovoltaic (OPV) devices, with or without ZnO nanoparticles buffer layer between the photoactive layer (P3HT:PCBM) and the cathode (Al top electrode), were fabricated. The devices were annealed at 145 °C either before or after depositing the top electrode. The objective of this study was to investigate the effects of the ZnO buffer layer and pre-/post-fabrication annealing on the general performance of these devices. The short-circuit current density (JSC), open-circuit voltage (VOC) and the external quantum efficiency (EQE) of the OPV devices were improved by the insertion of the ZnO layer and post-fabrication annealing. The post-fabrication annealed devices, with or without the ZnO layer, exhibited higher values of JSC, VOC and EQE than those of similar devices annealed before depositing the Al metal. This can be attributed to, among other things, improved charge transport across the interface between the photoactive layer and the Al top electrode as a result of post-annealing induced modification of the interface morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号