首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Overcoming the thickness paradox: Systematical optimization of inverted polymer solar cells
Institution:1. College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China;2. Beijng National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Abstract:Inverted structure comes out to be a promising alternative for making polymer solar cells (PSC) with high efficiency and long-term stability. Vertically stacked functional layers with planar shapes often suffer contradictions in holding high optical absorption and excellent charge transfer/hindrance capability to construct well performed inverted PSC devices. Here, we give an example of rational control of the thickness of electron transport layer (ETL), hole transport layer (HTL) and organic active layer (OAL) to achieve a synergistic effect on promoting the overall photovoltaic behaviors. With in-depth exploration of the interaction between device performance and layer thickness, we obtain the optimized device ITO/ZnO Ncs (45 nm)/P3HT:PCBM (70 nm)/MoO3 (1 nm)/Ag (70 nm) exhibiting an Voc of 0.63 V, Jsc of 12.52 mA/cm2, FF of 54% and PCE of 4.26%.
Keywords:Inverted polymer solar cells  Thickness control  Systematical optimization  Synergistic effect  Overall photovoltaic behavior
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号