首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expressions and bounds are derived for the residual norm in GMRES. It is shown that the minimal residual norm is large as long as the Krylov basis is well-conditioned. For scaled Jordan blocks the minimal residual norm is expressed in terms of eigenvalues and departure from normality. For normal matrices the minimal residual norm is expressed in terms of products of relative eigenvalue differences.  相似文献   

2.
In the present paper, we give some new convergence results of the global GMRES method for multiple linear systems. In the case where the coefficient matrix A is diagonalizable, we derive new upper bounds for the Frobenius norm of the residual. We also consider the case of normal matrices and we propose new expressions for the norm of the residual.  相似文献   

3.
The Ritz and harmonic Ritz values are approximate eigenvalues, which can be computed cheaply within the FOM and GMRES Krylov subspace iterative methods for solving non‐symmetric linear systems. They are also the zeros of the residual polynomials of FOM and GMRES, respectively. In this paper we show that the Walker–Zhou interpretation of GMRES enables us to formulate the relation between the harmonic Ritz values and GMRES in the same way as the relation between the Ritz values and FOM. We present an upper bound for the norm of the difference between the matrices from which the Ritz and harmonic Ritz values are computed. The differences between the Ritz and harmonic Ritz values enable us to describe the breakdown of FOM and stagnation of GMRES. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Recently Y. Saad proposed a flexible inner-outer preconditioned GMRES algorithm for nonsymmetric linear systems [4]. Following their ideas, we suggest an adaptive preconditioned CGS method, called CGS/GMRES (k), in which the preconditioner is constructed in the iteration step of CGS, by several steps of GMRES(k). Numerical experiments show that the residual of the outer iteration decreases rapidly. We also found the interesting residual behaviour of GMRES for the skewsymmetric linear system Ax = b, which gives a convergence result for restarted GMRES (k). For convenience, we discuss real systems.  相似文献   

5.
In this paper we study the parametrization proposed by Arioli, Pták and Strakoš (BIT Numerical Mathematics, v 38, 1998) for the class of matrices having the same GMRES residual norm convergence curve. We give expressions for the Hessenberg matrix and the orthonormal basis vectors constructed by GMRES as well as for iterates and error vectors. The iterates do not depend on the eigenvalues in the sense that changing the coefficients of the characteristic polynomial in the parametrization does not change the GMRES iterates as well as the residuals. However, the error vectors do depend on these coefficients.  相似文献   

6.
In this paper, our attention is concentrated on the GMRES method for the solution of the system (IT)x=b of linear algebraic equations with a nonsymmetric matrix. We perform m pre-iterations y l+1 =T yl +b before starting GMRES and put y m for the initial approximation in GMRES. We derive an upper estimate for the norm of the error vector in dependence on the mth powers of eigenvalues of the matrix T Further we study under what eigenvalues lay-out this upper estimate is the best one. The estimate shows and numerical experiments verify that it is advisable to perform pre-iterations before starting GMRES as they require fewer arithmetic operations than GMRES. Towards the end of the paper we present a numerical experiment for a system obtained by the finite difference approximation of convection-diffusion equations.  相似文献   

7.
In this paper we analyze the bi-conjugate gradient algorithm in finite precision arithmetic, and suggest reasons for its often observed robustness. By using a tridiagonal structure, which is preserved by the finite precision bi-conjugate gradient iteration, we are able to bound its residual norm by a minimum polynomial of a perturbed matrix (i.e. the residual norm of the exact GMRES applied to a perturbed matrix) multiplied by an amplification factor. This shows that occurrence of near-breakdowns or loss of biorthogonality does not necessarily deter convergence of the residuals provided that the amplification factor remains bounded. Numerical examples are given to gain insights into these bounds.

  相似文献   


8.
The Generalized Minimal Residual Method (GMRES) is one of the significant methods for solving linear algebraic systems with nonsymmetric matrices. It minimizes the norm of the residual on the linear variety determined by the initial residual and then-th Krylov residual subspace and is therefore optimal, with respect to the size of the residual, in the class of Krylov subspace methods. One possible way of computing the GMRES approximations is based on constructing the orthonormal basis of the Krylov subspaces (Arnoldi basis) and then solving the transformed least squares problem. This paper studies the numerical stability of such formulations of GMRES. Our approach is based on the Arnoldi recurrence for the actually, i.e., in finite precision arithmetic, computed quantities. We consider the Householder (HHA), iterated modified Gram-Schmidt (IMGSA), and iterated classical Gram-Schmidt (ICGSA) implementations. Under the obvious assumption on the numerical nonsingularity of the system matrix, the HHA implementation of GMRES is proved backward stable in the normwise sense. That is, the backward error for the approximation is proportional to machine precision . Additionally, it is shown that in most cases the norm of the residual computed from the transformed least squares problem (Arnoldi residual) gives a good estimate of the true residual norm, until the true residual norm has reached the level A x.This work was supported by NSF contract Int921824.  相似文献   

9.
刘瑶宁 《计算数学》2022,44(2):187-205
一类空间分数阶扩散方程经过有限差分离散后所得到的离散线性方程组的系数矩阵是两个对角矩阵与Toeplitz型矩阵的乘积之和.在本文中,对于几乎各向同性的二维或三维空间分数阶扩散方程的离散线性方程组,采用预处理Krylov子空间迭代方法,我们利用其系数矩阵的特殊结构和具体性质构造了一类分块快速正则Hermite分裂预处理子.通过理论分析,我们证明了所对应的预处理矩阵的特征值大部分都聚集于1的附近.数值实验也表明,这类分块快速正则Hermite分裂预处理子可以明显地加快广义极小残量(GMRES)方法和稳定化的双共轭梯度(BiCGSTAB)方法等Krylov子空间迭代方法的收敛速度.  相似文献   

10.
In this paper we propose a stable variant of Simpler GMRES. It is based on the adaptive choice of the Krylov subspace basis at a given iteration step using the intermediate residual norm decrease criterion. The new direction vector is chosen as in the original implementation of Simpler GMRES or it is equal to the normalized residual vector as in the GCR method. We show that such an adaptive strategy leads to a well-conditioned basis of the Krylov subspace and we support our theoretical results with illustrative numerical examples.  相似文献   

11.
We study the convergence of the GMRES/FOM and QMR/BiCG methods for solving nonsymmetric systems of equationsAx=b. We prove, in exact arithmetic, that any type of residual norm convergence obtained using BiCG can also be obtained using FOM but on a different system of equations. We consider practical comparisons of these procedures when they are applied to the same matrices. We use a unitary invariance shared by both methods, to construct test matrices where we can vary the nonnormality of the test matrix by variations in simplified eigenvector matrices. We used these test problems in two sets of numerical experiments. The first set of experiments was designed to study effects of increasing nonnormality on the convergence of GMRES and QMR. The second set of experiments was designed to track effects of the eigenvalue distribution on the convergence of QMR. In these tests the GMRES residual norms decreased significantly more rapidly than the QMR residual norms but without corresponding decreases in the error norms. Furthermore, as the nonnormality ofA was increased, the GMRES residual norms decreased more rapidly. This led to premature termination of the GMRES procedure on highly nonnormal problems. On the nonnormal test problems the QMR residual norms exhibited less sensitivity to changes in the nonnormality. The convergence of either type of procedure, as measured by the error norms, was delayed by the presence of large or small outliers and affected by the type of eigenvalues, real or complex, in the eigenvalue distribution ofA. For GMRES this effect can be seen only in the error norm plots.In honor of the 70th birthday of Ted RivlinThis work was supported by NSF grant GER-9450081.  相似文献   

12.
In this paper we give necessary and sufficient conditions for the complete or partial stagnation of the GMRES iterative method for solving real linear systems. Our results rely on a paper by Arioli, Pták and Strakoš (1998), characterizing the matrices having a prescribed convergence curve for the residual norms. We show that we have complete stagnation if and only if the matrix A is orthonormally similar to an upper or lower Hessenberg matrix having a particular first row or column or a particular last row or column. Partial stagnation is characterized by a particular pattern of the matrix Q in the QR factorization of the upper Hessenberg matrix generated by the Arnoldi process.  相似文献   

13.
Minimal residual methods, such as MINRES and GMRES, are well-known iterative versions of direct procedures for reducing a matrix to special condensed forms. The method of reduction used in these procedures is a sequence of unitary similarity transformations, while the condensed form is a tridiagonal matrix (MINRES) or a Hessenberg matrix (GMRES). The algorithm CSYM proposed in the 1990s for solving systems with complex symmetric matrices was based on the tridiagonal reduction performed via unitary congruences rather than similarities. In this paper, we construct an extension of this algorithm to the entire class of conjugate-normal matrices. (Complex symmetric matrices are a part of this class.) Numerical results are presented. They show that, on many occasions, the proposed algorithm has a superior convergence rate compared to GMRES.  相似文献   

14.
The finite difference discretization of the spatial fractional diffusion equations gives discretized linear systems whose coefficient matrices have a diagonal‐plus‐Toeplitz structure. For solving these diagonal‐plus‐Toeplitz linear systems, we construct a class of diagonal and Toeplitz splitting iteration methods and establish its unconditional convergence theory. In particular, we derive a sharp upper bound about its asymptotic convergence rate and deduct the optimal value of its iteration parameter. The diagonal and Toeplitz splitting iteration method naturally leads to a diagonal and circulant splitting preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1, especially when the discretization step‐size h is small. Numerical results exhibit that the diagonal and circulant splitting preconditioner can significantly improve the convergence properties of GMRES and BiCGSTAB, and these preconditioned Krylov subspace iteration methods outperform the conjugate gradient method preconditioned by the approximate inverse circulant‐plus‐diagonal preconditioner proposed recently by Ng and Pan (M.K. Ng and J.‐Y. Pan, SIAM J. Sci. Comput. 2010;32:1442‐1464). Moreover, unlike this preconditioned conjugate gradient method, the preconditioned GMRES and BiCGSTAB methods show h‐independent convergence behavior even for the spatial fractional diffusion equations of discontinuous or big‐jump coefficients.  相似文献   

15.
A simpler GMRES     
The generalized minimal residual (GMRES) method is widely used for solving very large, nonsymmetric linear systems, particularly those that arise through discretization of continuous mathematical models in science and engineering. By shifting the Arnoldi process to begin with Ar0 instead of r0, we obtain simpler Gram–Schmidt and Householder implementations of the GMRES method that do not require upper Hessenberg factorization. The Gram–Schmidt implementation also maintains the residual vector at each iteration, which allows cheaper restarts of GMRES(m) and may otherwise be useful.  相似文献   

16.
We consider the GMRES(m,k) method for the solution of linear systems Ax=b, i.e. the restarted GMRES with restart m where to the standard Krylov subspace of dimension m the other subspace of dimension k is added, resulting in an augmented Krylov subspace. This additional subspace approximates usually an A‐invariant subspace. The eigenspaces associated with the eigenvalues closest to zero are commonly used, as those are thought to hinder convergence the most. The behaviour of residual bounds is described for various situations which can arise during the GMRES(m,k) process. The obtained estimates for the norm of the residual vector suggest sufficient conditions for convergence of GMRES(m,k) and illustrate that these augmentation techniques can remove stagnation of GMRES(m) in many cases. All estimates are independent of the choice of an initial approximation. Conclusions and remarks assessing numerically the quality of proposed bounds conclude the paper. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we study the Generalized Minimal Residual (GMRES) method for solving singular linear systems, particularly when the necessary and sufficient condition to obtain a Krylov solution is not satisfied. Thanks to some new results which may be applied in exact arithmetic or in finite precision, we analyze the convergence of GMRES and restarted GMRES. These formulas can also be used in the case when the systems are nonsingular. In particular, it allows us to understand what is often referred to as stagnation of the residual norm of GMRES. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Based on matrix splittings, a new alternating preconditioner with two parameters is proposed for solving saddle point problems. Some theoretical analyses for the eigenvalues of the associated preconditioned matrix are given. The choice of the parameters is considered and the quasi-optimal parameters are obtained. The new preconditioner with these quasi-optimal parameters significantly improves the convergence rate of the generalized minimal residual (GMRES) iteration. Numerical experiments from the linearized Navier-Stokes equations demonstrate the efficiency of the new preconditioner, especially on the larger viscosity parameter ν. Further extensions of the preconditioner to generalized saddle point matrices are also checked.  相似文献   

19.
GMRES方法的收敛率   总被引:1,自引:1,他引:0  
1 引 言 GMRES方法是目前求解大型稀疏非对称线性方程组 Ax=b,A∈R~(n×n);x,b∈R~n (1)最为流行的方法之一.设x~((0))是(1)解的初始估计,r~((0))=b-Ax~((0))是初始残量,K_k=span{r~((0)),Ar~((0)),…A~(k-1)r~((0))}为由r~((0))和A产生的Krylov子空间.GMRES方法的第k步  相似文献   

20.
Recently Eirola and Nevanlinna have proposed an iterative solution method for unsymmetric linear systems, in which the preconditioner is updated from step to step. Following their ideas we suggest variants of GMRES, in which a preconditioner is constructed per iteration step by a suitable approximation process, e.g., by GMRES itself. Our numerical experiments indicate that this may lead to considerable savings in CPU-time and memory requirements in typical CFD applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号