首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
任志茹 《计算数学》2013,35(3):305-322
三阶线性常微分方程在天文学和流体力学等学科的研究中有着广泛的应用.本文介绍求解三阶线性常微分方程由Sinc方法离散所得到的线性方程组的结构预处理方法.首先, 我们利用Sinc方法对三阶线性常微分方程进行离散,证明了离散解以指数阶收敛到原问题的精确解.针对离散后线性方程组的系数矩阵的特殊结构, 提出了结构化的带状预处理子,并证明了预处理矩阵的特征值位于复平面上的一个矩形区域之内.然后, 我们引入新的变量将三阶线性常微分方程等价地转化为由两个二阶线性常微分方程构成的常微分方程组, 并利用Sinc方法对降阶后的常微分方程组进行离散.离散后线性方程组的系数矩阵是分块2×2的, 且每一块都是Toeplitz矩阵与对角矩阵的组合.为了利用Krylov子空间方法有效地求解离散后的线性方程组,我们给出了块对角预处理子, 并分析了预处理矩阵的性质.最后, 我们对降阶后二阶线性常微分方程组进行了一些比较研究.数值结果证实了Sinc方法能够有效地求解三阶线性常微分方程.  相似文献   

2.
朱禹  陈芳 《计算数学》2022,44(3):368-378
利用隐式守恒型差分格式来离散空间分数阶非线性薛定谔方程,可得到一个离散线性方程组.该离散线性方程组的系数矩阵为一个纯虚数复标量矩阵、一个对角矩阵与一个对称Toeplitz矩阵之和.基于此,本文提出了用一种\textit{修正的埃尔米特和反埃尔米特分裂}(MHSS)型迭代方法来求解此离散线性方程组.理论分析表明,MHSS型迭代方法是无条件收敛的.数值实验也说明了该方法是可行且有效的.  相似文献   

3.
对一类四阶微分方程两点边值问题的Hermite有限元方法进行了研究.首先讨论了该方程通常意义下的Galerkin有限元离散,考虑到有限元离散得到的线性方程组的对称正定性,文中采用了预处理最速下降法和共轭梯度方法求解线性方程组,通过选择不同的预处理器,使得求解该方程组的迭代次数有了很大的改观.  相似文献   

4.
针对一类具结构的非对称线性方程组提出了一类子结构预处理子,该预处理子只保留了约束条件的一半项.研究表明,预处理矩阵只有三个离散的特征值.为了避免计算Schur补的逆,还给出了正则化的子结构预处理子,同样对预处理矩阵进行了谱分析.这些结果将Zhou和Niu(Zhou J T,Niu Q.Substructure preconditioners for a class of structuredlinear systems of equations.Math.Comput.Model.,2010,52:1547-1553)的结果推广到非对称结构线性方程组.数值算例验证了提出的子结构预处理子的有效性.  相似文献   

5.
李天怡  陈芳 《计算数学》2021,43(1):110-117
本文将QHSS迭代方法运用于求解一类分块二阶线性方程组. 通过适当地放宽QHSS迭代方法的收敛性条件,我们给出了用QHSS迭代方法求解一类分块二阶线性方程组的具体迭代格式,并证明了当系数矩阵中的(1,1)块对称半正定时该QHSS迭代方法的收敛性.我们还用数值实验验证了QHSS迭代方法的可行性和有效性.  相似文献   

6.
本文研究Toeplitz+Hankel线性方程组的预处理迭代解法.我们提出了几个新的预条件子,并分析了预处理矩阵的谱性质,当生成函数在Wiener类中时,预处理矩阵的特征值聚集在1附近.数值实验表明该预处理子比文[5]中的预处理子更有效.  相似文献   

7.
针对相关于不可压缩Navier-Stokes方程数值求解的一类3×3块结构的线性方程组,基于线性方程组的等价形式,构造了一个非精确的块因子分解预处理子,在新的特征值等价矩阵形式的基础上,得到了预处理矩阵特征值实部和虚部的上下界估计.数值实验表明,与已有的预处理子相比,所构造的预处理子可以使得GMRES迭代方法对网格尺寸,网格形式以及粘度系数的依赖性都比较弱,且在迭代步数和CPU时间上都占优.  相似文献   

8.
曾闽丽  张国凤 《计算数学》2016,38(4):354-371
 有限元离散一类速度追踪问题后得到具有鞍点结构的线性系统,针对该鞍点系统,本文提出了一种新的分裂迭代技术.证明了新的分裂迭代方法的无条件收敛性,详细分析了新的分裂预条件子对应的预处理矩阵的谱性质.数值结果验证了对于大范围的网格参数和正则参数,新的分裂预条件子在求解有限元离散速度追踪问题得到的鞍点系统时的可行性和有效性.  相似文献   

9.
Krylov子空间投影法及其在油藏数值模拟中的应用   总被引:3,自引:0,他引:3  
Krylov子空间投影法是一类非常有效的大型线性代数方程组解法,随着左右空间Lm、Km的不同选取可以得到许多人们熟知的方法.按矩阵Hm的不同类型,将Krylov子空间方法分成两大类,简要分析了这两类方法的优缺点及其最新进展.将目前最为可靠实用的广义最小余量法(GMRES)应用于油藏数值模拟计算问题,利用矩阵分块技术,采用块拟消去法(PE)对系数阵进行预处理.计算结果表明本文的预处理GMRES方法优于目前使用较多的预处理正交极小化ORTHMIN方法,最后还讨论了投影类方法的局限和今后的可能发展方向.  相似文献   

10.
设A为一实对称正定的严格对角占优矩阵.设A=D-B为A的Jacobi分裂.为了求解线性方程组Ax=b,在新提出的预处理子的基础上,我们采用预处理共轭梯度方法(PCG)来求解该问题.新提出的预处理子Pv=D+νvv~T,其中v=|B|e,e=(1,...,1)~T,ν=v~TBv/||v||_2~4,且ν使||cvv~T-B||_F达到极小.我们得到了预处理矩阵P_v~(-1)A特征值的上下界,它的界比JIN提出的预处理子的界简单紧凑.数值结果表明我们的预处理子的有效性.  相似文献   

11.
The shifted finite‐difference discretization of the one‐dimensional almost‐isotropic spatial fractional diffusion equation results in a discrete linear system whose coefficient matrix is a sum of two diagonal‐times‐Toeplitz matrices. For this kind of linear systems, we propose a class of regularized Hermitian splitting iteration methods and prove its asymptotic convergence under mild conditions. For appropriate circulant‐based approximation to the corresponding regularized Hermitian splitting preconditioner, we demonstrate that the induced fast regularized Hermitian splitting preconditioner possesses a favorable preconditioning property. Numerical results show that, when used to precondition Krylov subspace iteration methods such as generalized minimal residual and biconjugate gradient stabilized methods, the fast preconditioner significantly outperforms several existing ones.  相似文献   

12.
For the discrete linear systems resulted from the discretization of the one‐dimensional anisotropic spatial fractional diffusion equations of variable coefficients with the shifted finite‐difference formulas of the Grünwald–Letnikov type, we propose a class of respectively scaled Hermitian and skew‐Hermitian splitting iteration method and establish its asymptotic convergence theory. The corresponding induced matrix splitting preconditioner, through further replacements of the involved Toeplitz matrices with certain circulant matrices, leads to an economic variant that can be executed by fast Fourier transforms. Both theoretical analysis and numerical implementations show that this fast respectively scaled Hermitian and skew‐Hermitian splitting preconditioner can significantly improve the computational efficiency of the Krylov subspace iteration methods employed as effective linear solvers for the target discrete linear systems.  相似文献   

13.
The finite difference discretization of the spatial fractional diffusion equations gives discretized linear systems whose coefficient matrices have a diagonal‐plus‐Toeplitz structure. For solving these diagonal‐plus‐Toeplitz linear systems, we construct a class of diagonal and Toeplitz splitting iteration methods and establish its unconditional convergence theory. In particular, we derive a sharp upper bound about its asymptotic convergence rate and deduct the optimal value of its iteration parameter. The diagonal and Toeplitz splitting iteration method naturally leads to a diagonal and circulant splitting preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1, especially when the discretization step‐size h is small. Numerical results exhibit that the diagonal and circulant splitting preconditioner can significantly improve the convergence properties of GMRES and BiCGSTAB, and these preconditioned Krylov subspace iteration methods outperform the conjugate gradient method preconditioned by the approximate inverse circulant‐plus‐diagonal preconditioner proposed recently by Ng and Pan (M.K. Ng and J.‐Y. Pan, SIAM J. Sci. Comput. 2010;32:1442‐1464). Moreover, unlike this preconditioned conjugate gradient method, the preconditioned GMRES and BiCGSTAB methods show h‐independent convergence behavior even for the spatial fractional diffusion equations of discontinuous or big‐jump coefficients.  相似文献   

14.
Recently, Bai et al. (2013) proposed an effective and efficient matrix splitting iterative method, called preconditioned modified Hermitian/skew-Hermitian splitting (PMHSS) iteration method, for two-by-two block linear systems of equations. The eigenvalue distribution of the iterative matrix suggests that the splitting matrix could be advantageously used as a preconditioner. In this study, the CGNR method is utilized for solving the PMHSS preconditioned linear systems, and the performance of the method is considered by estimating the condition number of the normal equations. Furthermore, the proposed method is compared with other PMHSS preconditioned Krylov subspace methods by solving linear systems arising in complex partial differential equations and a distributed control problem. The numerical results demonstrate the difference in the performance of the methods under consideration.  相似文献   

15.
A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.  相似文献   

16.
In this paper, an improved block splitting preconditioner for a class of complex symmetric indefinite linear systems is proposed. By adopting two iteration parameters and the relaxation technique, the new preconditioner not only remains the same computational cost with the block preconditioners but also is much closer to the original coefficient matrix. The theoretical analysis shows that the corresponding iteration method is convergent under suitable conditions and the preconditioned matrix can have well-clustered eigenvalues around (0,1) with a reasonable choice of the relaxation parameters. An estimate concerning the dimension of the Krylov subspace for the preconditioned matrix is also obtained. Finally, some numerical experiments are presented to illustrate the effectiveness of the presented preconditioner.  相似文献   

17.
We construct a class of quasi‐Toeplitz splitting iteration methods to solve the two‐sided unsteady space‐fractional diffusion equations with variable coefficients. By making full use of the structural characteristics of the coefficient matrix, the method only requires computational costs of O(n log n) with n denoting the number of degrees of freedom. We develop an appropriate circulant matrix to replace the Toeplitz matrix as a preconditioner. We discuss the spectral properties of the quasi‐circulant splitting preconditioned matrix. Numerical comparisons with existing approaches show that the present method is both effective and efficient when being used as matrix splitting preconditioners for Krylov subspace iteration methods.  相似文献   

18.
We construct, analyze, and implement SSOR‐like preconditioners for non‐Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew‐Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR‐like iteration methods as well as the corresponding preconditioned GMRES iteration methods. Numerical implementations show that Krylov subspace iteration methods such as GMRES, when accelerated by the SSOR‐like preconditioners, are efficient solvers for these classes of non‐Hermitian positive definite linear systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
To further study the Hermitian and non‐Hermitian splitting methods for a non‐Hermitian and positive‐definite matrix, we introduce a so‐called lopsided Hermitian and skew‐Hermitian splitting and then establish a class of lopsided Hermitian/skew‐Hermitian (LHSS) methods to solve the non‐Hermitian and positive‐definite systems of linear equations. These methods include a two‐step LHSS iteration and its inexact version, the inexact Hermitian/skew‐Hermitian (ILHSS) iteration, which employs some Krylov subspace methods as its inner process. We theoretically prove that the LHSS method converges to the unique solution of the linear system for a loose restriction on the parameter α. Moreover, the contraction factor of the LHSS iteration is derived. The presented numerical examples illustrate the effectiveness of both LHSS and ILHSS iterations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号