首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The paper presents the results of laboratory measurements of the acoustic nonlinearity parameter for a granite sample from the site of a conducted field experiment. This made it possible to completely confirm the results of the field experiment and explain the occurrence of a large scatter of values for the nonlinearity parameter in the field measurements. The size of the quadratic linearity parameter in granite rocks was determined, normalized to the volumetric concentration of fractures, which can be used for remote estimation of the fracture concentration.  相似文献   

2.
Prediction of crack growth and fatigue life estimation of metals using linear/nonlinear acousto-ultrasound methods is an ongoing issue. It is known that by measuring nonlinear parameters, the relative accumulated fatigue damage can be evaluated. However, there is still a need to measure two crack propagation states to assess the absolute residual fatigue life. A procedure based on the measurement of a third-order acoustic nonlinear parameter is presented to assess the residual fatigue life of a metallic component without the need of a baseline. The analytical evaluation of how the cubic nonlinear-parameter evolves during crack propagation is presented by combining the Paris law to the Nazarov-Sutin crack equation. Unlike other developed models, the proposed model assumes a crack surface topology with variable geometrical parameters. Measurements of the cubic nonlinearity parameter on AA2024-T351 specimens demonstrated high sensitivity to crack propagation and excellent agreement with the predicted theoretical behavior. The advantages of using the cubic nonlinearity parameter for fatigue cracks on metals are discussed by comparing the relevant results of a quadratic nonlinear parameter. Then the methodology to estimate crack size and residual fatigue life without the need of a baseline is presented, and advantages and limitations are discussed.  相似文献   

3.
声波在有裂纹的固体中的非经典非线性传播   总被引:3,自引:0,他引:3  
固体材料的无损检测是一个非常重要的课题,带裂纹的固体材料显示非经典非线性声学现象,本文对此现象进行了实验和理论研究。从实验上一维观察到此现象,发现奇次谐波振幅与基波振幅呈平方关系,与理论预计基本吻合;理论上从二维的角度数值模拟了声波在有损耗的带裂纹的固体中的声传播,并讨论了经典非线性和非经典非线性对声传播的影响,发现裂纹的贡献主要体现在非经典非线性上。分析了样品中裂纹的宽度和位置与非线性声参数的关系,在靠近样品中心的两个对称区域以及距离声源较近点,非线性声参数对样品的破损较为敏感,而在中央和距声源最远端敏感性较低;随着裂纹宽度的扩大,非线性声参数也开始变大,但在破损区域蔓延到棒边缘之前,有下降的趋势。   相似文献   

4.
5.
The seismo-acoustic method is one of the most promising emerging techniques for the detection of landmines. Numerous field tests have demonstrated that buried landmines manifest themselves at the surface through linear and nonlinear responses to acoustic/seismic excitation. The present paper describes modeling of the nonlinear response in the framework of the mass-spring model of the soil-mine system. The perturbation method used in the model allows for the derivation of an analytical solution describing both quadratic and cubic acoustic interactions at the soil-mine interface. This solution has been compared with actual field measurements to obtain nonlinear parameters of the buried mines. These parameters have been analyzed with respect to mine types and burial depths. It was found that the cubic nonlinearity could be a significant contributor to the nonlinear response. This effect has led to the development of a new intermodulation detection algorithm based on dual-frequency excitation. Both quadratic and intermodulation nonlinear algorithms were evaluated at the U.S. Army outdoor testing facilities. The algorithms appear to complement each other in improving the overall detection performance.  相似文献   

6.
7.
This paper describes nonlinear shear wave experiments conducted in soft solids with transient elastography technique. The nonlinear solutions that theoretically account for plane and nonplane shear wave propagation are compared with experimental results. It is observed that the cubic nonlinearity implied in high amplitude transverse waves at f(0)=100 Hz results in the generation of odd harmonics 3f(0), 5f(0). In the case of the nonlinear interaction between two transverse waves at frequencies f(1) and f(2), the resulting harmonics are f(i)+/-2f(j)(i,j=1,2). Experimental data are compared to numerical solutions of the modified Burgers equation, allowing an estimation of the nonlinear parameter relative to shear waves. The definition of this combination of elastic moduli (up to fourth order) can be obtained using an energy development adapted to soft solid. In the more complex situation of nonplane shear waves, the quadratic nonlinearity gives rise to more usual harmonics, at sum and difference frequencies, f(i)+/-f(j). All components of the field have to be taken into account.  相似文献   

8.
J. H. Cantrell 《哲学杂志》2013,93(11):1539-1554
A comprehensive, analytical treatment is presented of the microelastic–plastic nonlinearities resulting from the interaction of a stress perturbation with dislocation substructures and cracks that evolve during cyclic fatigue of wavy slip metals. The interaction is quantified by a material nonlinearity parameter β extracted from acoustic harmonic generation measurements. The contribution to β from the substructures is obtained from the Cantrell model. The contribution to β from cracks is obtained by applying the Paris law to the Nazarov–Sutin crack nonlinearity equation. The nonlinearity parameter resulting from the two contributions is predicted to increase monotonically by hundreds of percent during fatigue from the virgin state to fracture. The increase in β during the first 80–90% fatigue life is dominated by the evolution of dislocation substructures, while the last 10–20% is dominated by crack growth. Application of the model to aluminium alloy 2024-T4 in stress-controlled loading at 276?MPa yields excellent agreement between theory and experiment.  相似文献   

9.
The meaning of the experimentally measured nonlinear parameters of a medium is discussed. The difference in meaning between the local nonlinearity, which is measured in the vicinity of a single defect and depends on the size of the region of averaging, and the effective volume nonlinearity of the medium containing numerous defects is emphasized. The local nonlinearity arising at the tip of a crack is calculated; this non-linearity decreases with an increase in the region of second harmonic generation. The volume nonlinearity is calculated for a solid containing spherical cavities. The volume nonlinearity is also calculated for a medium containing infinitely thin cracks in the form of circular disks, which assume the shape of ellipsoids in the course of the crack opening. The nonlinear acoustic parameter is calculated with the use of the exact classical results of the theory of cracks.  相似文献   

10.
The weak nonlinear process of propagation of short pulses in graded-index light guides that are weakly inhomogeneous in the longitudinal direction and slightly bent is investigated by means of a consistent asymptotic method. The process as a whole is proved to be three-scale in respect to a small parameter related to the magnitude of nonlinearity. The phase of the most rapid process and transverse distribution of the wave field are expressed explicitly in terms of a certain Sturm-Liouville problem. For a pulse envelope the nonlinear Schrödinger equation is derived, its coefficients depending on the longitudinal coordinate. The existence of a guaranteed interval of conservation of concentration of the pulse envelope is ascertained. For a class of very smooth inhomogeneities formulae are obtained describing the variation of the amplitude and width of the pulse during propagation.  相似文献   

11.
Mezil S  Chigarev N  Tournat V  Gusev V 《Optics letters》2011,36(17):3449-3451
Experiments with an all-optical method for the study of the nonlinear acoustics of cracks in solids are reported. Nonlinear acoustic waves are initiated by the absorption of radiation from a pair of laser beams intensity modulated at two different frequencies. The detection of acoustic waves at mixed frequencies, absent in the frequency spectrum of the heating lasers, by optical interferometry or deflectometry provides unambiguous evidence of the elastic nonlinearity of the crack. The high contrast in crack imaging achieved by remote optical monitoring of the nonlinear acoustic processes is due to the strong dependence of the efficiency of optoacoustic conversion on the state of the crack. The highest acoustic nonlinearity is observed in the transitional state of the crack, which is intermediate between the open and the closed ones.  相似文献   

12.
有偏压中心对称光折变晶体中的屏蔽孤子   总被引:7,自引:6,他引:1  
给出了中心对称光折变晶体中屏蔽孤子的高阶空间电荷场.当高阶项可以忽略时,这个电荷场就变为早前在中心对称光折变晶体中研究的屏蔽孤子的空间电荷场.研究了中心对称光折变晶体中屏蔽孤子的高阶非线性波动方程.在适当的条件下,这个非线性波动方程能够展示明暗空间光孤子.这类晶体不同于非中心对称晶体,其非线性折射率的改变来源于二次电光效应,而不是一般的线性电光效应.应用光束传播的方法,对这些孤子的稳定性进行了讨论.表明在小的微扰下这类孤子是稳定的,不会发生分裂.  相似文献   

13.
The aim is to assess the nonclassical component of material nonlinearity in several classes of materials with weak, intermediate, and high nonlinear properties. In this contribution, an optimized nonlinear resonant ultrasound spectroscopy (NRUS) measuring and data processing protocol applied to small samples is described. The protocol is used to overcome the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic nonlinearity. External temperature fluctuation is identified as a primary source of measurement contamination. For instance, a variation of 0.1?°C produced a frequency variation of 0.01%, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to overcome environmental effects, the reference frequency measurements are repeated before each excitation level and then used to compute nonlinear parameters. Using this approach, relative resonant frequency shifts of 10(-5) can be measured, which is below the limit of 10(-4) often considered as the limit of NRUS sensitivity under common experimental conditions. Due to enhanced sensitivity resulting from the correction procedure applied in this work, nonclassical nonlinearity in materials that before have been assumed to only be classically nonlinear in past work (steel, brass, and aluminum) is reported.  相似文献   

14.
A dedicated modeling technique for comprehending nonlinear characteristics of ultrasonic waves traversing in a fatigued medium was developed, based on a retrofitted constitutive relation of the medium by considering the nonlinearities originated from material, fatigue damage, as well as the “breathing” motion of fatigue cracks. Piezoelectric wafers, for exciting and acquiring ultrasonic waves, were integrated in the model. The extracted nonlinearities were calibrated by virtue of an acoustic nonlinearity parameter. The modeling technique was validated experimentally, and the results showed satisfactory consistency in between, both revealing: the developed modeling approach is able to faithfully simulate fatigue crack-incurred nonlinearities manifested in ultrasonic waves; a cumulative growth of the acoustic nonlinearity parameter with increasing wave propagation distance exists; such a parameter acquired via a sensing path is nonlinearly related to the offset distance from the fatigue crack to that sensing path; and neither the incidence angle of the probing wave nor the length of the sensing path impacts on the parameter significantly. This study has yielded a quantitative characterization strategy for fatigue cracks using embeddable piezoelectric sensor networks, facilitating deployment of structural health monitoring which is capable of identifying small-scale damage at an embryo stage and surveilling its growth continuously.  相似文献   

15.
项延训  朱武军  邓明晰  轩福贞 《中国物理 B》2016,25(2):24303-024303
The experimental measurements and numerical simulations are performed to study ultrasonic nonlinear responses from the plastic deformation in weld joints. The ultrasonic nonlinear signals are measured in the plastic deformed30Cr2Ni4 Mo V specimens, and the results show that the nonlinear parameter monotonically increases with the plastic strain, and that the variation of nonlinear parameter in the weld region is maximal compared with those in the heat-affected zone and base regions. Microscopic images relating to the microstructure evolution of the weld region are studied to reveal that the change of nonlinear parameter is mainly attributed to dislocation evolutions in the process of plastic deformation loading. Meanwhile, the finite element model is developed to investigate nonlinear behaviors of ultrasonic waves propagating in a plastic deformed material based on the nonlinear stress–strain constitutive relationship in a medium. Moreover, a pinned string model is adopted to simulate dislocation evolution during plastic damages. The simulation and experimental results show that they are in good consistency with each other, and reveal a rising acoustic nonlinearity due to the variations of dislocation length and density and the resulting stress concentration.  相似文献   

16.
根据同步解调的原理,考察振动声调制检测输出信号中的调制成分,对金属杆内振动/超声在裂纹面上的相互作用进行了分析.制作了含有不同尺寸裂纹的铝杆试样,以扫频激励的方式得到合适的高频激励参数,分析输出信号中的调制信息,发现工件中的高频超声可分为两部分:一部分声波通过裂纹面,受到低频振动信号的调制,另一部分则保持不变。在此基础上对非线性调制模型进行了修正,并提出了一种用于裂纹检测的定量方法。与超声C扫描检测结果对比表明,此定量方法可用于估计金属杆中疲劳裂纹尺寸。   相似文献   

17.
The nonlinear Bloch theorem for the temporal and spatial Schrödinger solitons in dispersive and nonlinear periodic structures is proved. It is shown that bright and dark solitary nonlinear Bloch waves exist only under certain conditions and that the parameter functions describing dispersion and nonlinearity periodic inhomogeneities cannot be chosen independently.  相似文献   

18.
In this work, a new method to measure in contact the nonlinearity parameter beta of solid plates is presented. A high frequency (HF) tone-burst signal of 20 MHz is inserted in the material by a contact-transducer (with a suitable coupling). A low frequency (LF) pulse (2.5 MHz) is applied to the other face, in the opposite direction, so that the nonlinear interaction of the two waves takes place during the back propagation toward the HF transducer. This collinear interaction creates a phase modulation of the HF tone-burst which is proportional to the beta coefficient and the particle velocity of the LF wave. To determine this particle velocity, in time domain, an extended self-reciprocity calibration of the contact LF transducer is used. A numeric phase demodulation is then performed, giving the beta coefficient of the sample. The proposed method is validated by nonlinearity parameter measurements in Fused Silica. The nonlinear parameter of Fused Silica measured is found to be in good agreement with the literature, and specially the negative sign of this parameter.  相似文献   

19.
Lebedev  A. V.  Ostrovskii  L. A.  Sutin  A. M. 《Acoustical Physics》2005,51(1):S88-S101
General approaches to solving the problem of nonlinear acoustic spectroscopy of defects in geomaterials are considered. Expressions that relate the nonlinear response (scattering at combination frequencies) to the position, orientation, and nonlinear characteristics of narrow cracks are obtained. The expressions describe a broad class of nonlinear interactions at a crack. The nonlinearity caused by the contact of uneven rough edges of a crack is analyzed in detail. The results of the analysis are compared with the results obtained earlier from considering micromechanical models and with experimental data. The satisfactory agreement between the theoretical and experimental values of Landau’s moduli suggests that the mechanism of contact nonlinearity may manifest itself in the process of fracture of polycrystalline rock, when narrow cracks with uneven edges are formed. Numerical examples demonstrate the possibility of determining the orientation and position of a narrow crack. The procedure of solving the problem of crack localization is illustrated by the example of a crack in a thin rod. The importance of taking into account the phase data in the determination of the crack coordinate is pointed out.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号