首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A filter of a sentential logic ? is Leibniz when it is the smallest one among all the ?-filters on the same algebra having the same Leibniz congruence. This paper studies these filters and the sentential logic ?+ defined by the class of all ?-matrices whose filter is Leibniz, which is called the strong version of ?, in the context of protoalgebraic logics with theorems. Topics studied include an enhanced Correspondence Theorem, characterizations of the weak algebraizability of ?+ and of the explicit definability of Leibniz filters, and several theorems of transfer of metalogical properties from ? to ?+. For finitely equivalential logics stronger results are obtained. Besides the general theory, the paper examines the examples of modal logics, quantum logics and Łukasiewicz's finitely-valued logics. One finds that in some cases the existence of a weak and a strong version of a logic corresponds to well-known situations in the literature, such as the local and the global consequences for normal modal logics; while in others these constructions give an independent interest to the study of other lesser-known logics, such as the lattice-based many-valued logics. Received: 30 October 1998 /?Published online: 15 June 2001  相似文献   

2.
This paper presents a uniform and modular method to prove uniform interpolation for several intermediate and intuitionistic modal logics. The proof-theoretic method uses sequent calculi that are extensions of the terminating sequent calculus G4ip for intuitionistic propositional logic. It is shown that whenever the rules in a calculus satisfy certain structural properties, the corresponding logic has uniform interpolation. It follows that the intuitionistic versions of K and KD (without the diamond operator) have uniform interpolation. It also follows that no intermediate or intuitionistic modal logic without uniform interpolation has a sequent calculus satisfying those structural properties, thereby establishing that except for the seven intermediate logics that have uniform interpolation, no intermediate logic has such a sequent calculus.  相似文献   

3.
We investigate model theoretic characterisations of the expressive power of modal logics in terms of bisimulation invariance. The paradigmatic result of this kind is van Benthem’s theorem, which says that a first-order formula is invariant under bisimulation if, and only if, it is equivalent to a formula of basic modal logic. The present investigation primarily concerns ramifications for specific classes of structures. We study in particular model classes defined through conditions on the underlying frames, with a focus on frame classes that play a major role in modal correspondence theory and often correspond to typical application domains of modal logics. Classical model theoretic arguments do not apply to many of the most interesting classes-for instance, rooted frames, finite rooted frames, finite transitive frames, well-founded transitive frames, finite equivalence frames-as these are not elementary. Instead we develop and extend the game-based analysis (first-order Ehrenfeucht-Fraïssé versus bisimulation games) over such classes and provide bisimulation preserving model constructions within these classes. Over most of the classes considered, we obtain finite model theory analogues of the classically expected characterisations, with new proofs also for the classical setting. The class of transitive frames is a notable exception, with a marked difference between the classical and the finite model theory of bisimulation invariant first-order properties. Over the class of all finite transitive frames in particular, we find that monadic second-order logic is no more expressive than first-order as far as bisimulation invariant properties are concerned — though both are more expressive here than basic modal logic. We obtain ramifications of the de Jongh-Sambin theorem and a new and specific analogue of the Janin-Walukiewicz characterisation of bisimulation invariant monadic second-order for finite transitive frames.  相似文献   

4.
Nested sequent systems for modal logics are a relatively recent development, within the general area known as deep reasoning. The idea of deep reasoning is to create systems within which one operates at lower levels in formulas than just those involving the main connective or operator. Prefixed tableaus go back to 1972, and are modal tableau systems with extra machinery to represent accessibility in a purely syntactic way. We show that modal nested sequents and prefixed modal tableaus are notational variants of each other, roughly in the same way that Gentzen sequent calculi and tableaus are notational variants. This immediately gives rise to new modal nested sequent systems which may be of independent interest. We discuss some of these, including those for some justification logics that include standard modal operators.  相似文献   

5.
We set up a generic framework for proving completeness results for variants of the modal mu-calculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new completeness results: for the graded mu-calculus (which is equivalent to monadic second-order logic on the class of unranked tree models), and for the monotone modal mu-calculus.Besides these main applications, our result covers the Kozen–Walukiewicz completeness theorem for the standard modal mu-calculus, as well as the linear-time mu-calculus and modal fixpoint logics on ranked trees. Completeness of the linear-time mu-calculus is known, but the proof we obtain here is different and places the result under a common roof with Walukiewicz' result.Our approach combines insights from the theory of automata operating on potentially infinite objects, with methods from the categorical framework of coalgebra as a general theory of state-based evolving systems. At the interface of these theories lies the notion of a coalgebraic modal one-step language. One of our main contributions here is the introduction of the novel concept of a disjunctive basis for a modal one-step language. Generalizing earlier work, our main general result states that in case a coalgebraic modal logic admits such a disjunctive basis, then soundness and completeness at the one-step level transfer to the level of the full coalgebraic modal mu-calculus.  相似文献   

6.
7.
The intuitive notion of evidence has both semantic and syntactic features. In this paper, we develop an evidence logic for epistemic agents faced with possibly contradictory evidence from different sources. The logic is based on a neighborhood semantics, where a neighborhood N indicates that the agent has reason to believe that the true state of the world lies in N. Further notions of relative plausibility between worlds and beliefs based on the latter ordering are then defined in terms of this evidence structure, yielding our intended models for evidence-based beliefs. In addition, we also consider a second more general flavor, where belief and plausibility are modeled using additional primitive relations, and we prove a representation theorem showing that each such general model is a p-morphic image of an intended one. This semantics invites a number of natural special cases, depending on how uniform we make the evidence sets, and how coherent their total structure. We give a structural study of the resulting ‘uniform’ and ‘flat’ models. Our main result are sound and complete axiomatizations for the logics of all four major model classes with respect to the modal language of evidence, belief and safe belief. We conclude with an outlook toward logics for the dynamics of changing evidence, and the resulting language extensions and connections with logics of plausibility change.  相似文献   

8.
Wolter in [38] proved that the Craig interpolation property transfers to fusion of normal modal logics. It is well-known [21] that for such logics Craig interpolation corresponds to an algebraic property called superamalgamability. In this paper, we develop model-theoretic techniques at the level of first-order theories in order to obtain general combination results transferring quantifier-free interpolation to unions of theories over non-disjoint signatures. Such results, once applied to equational theories sharing a common Boolean reduct, can be used to prove that superamalgamability is modular also in the non-normal case. We also state that, in this non-normal context, superamalgamability corresponds to a strong form of interpolation that we call “comprehensive interpolation property” (which consequently transfers to fusions).  相似文献   

9.
We present some results on algebraic and modal analysis of polynomial (intrinsically definable) distortions of the standard provability predicate in Peano Arithmetic PA, and investigate three provability-like modal systems related to the Gödel-Löb modal system GL. We also present a short review of relational and topological semantics for these systems, and describe the dual category of algebraic models of our main modal system.  相似文献   

10.
In a modular approach, we lift Hilbert-style proof systems for propositional, modal and first-order logic to generalized systems for their respective team-based extensions. We obtain sound and complete axiomatizations for the dependence-free fragment FO(~) of Väänänen's first-order team logic TL, for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL, and for the corresponding logics of dependence, independence, inclusion and exclusion.As a crucial step in the completeness proof, we show that the above logics admit, in a particular sense, a semantics-preserving elimination of modalities and quantifiers from formulas.  相似文献   

11.
In previous work [15], we presented a hierarchy of classical modal systems, along with algebraic semantics, for the reasoning about intuitionistic truth, belief and knowledge. Deviating from Gödel's interpretation of IPC in S4, our modal systems contain IPC in the way established in [13]. The modal operator can be viewed as a predicate for intuitionistic truth, i.e. proof. Epistemic principles are partially adopted from Intuitionistic Epistemic Logic IEL [4]. In the present paper, we show that the S5-style systems of our hierarchy correspond to an extended Brouwer–Heyting–Kolmogorov interpretation and are complete w.r.t. a relational semantics based on intuitionistic general frames. In this sense, our S5-style logics are adequate and complete systems for the reasoning about proof combined with belief or knowledge. The proposed relational semantics is a uniform framework in which also IEL can be modeled. Verification-based intuitionistic knowledge formalized in IEL turns out to be a special case of the kind of knowledge described by our S5-style systems.  相似文献   

12.
A complete many-valued logic with product-conjunction   总被引:6,自引:0,他引:6  
A simple complete axiomatic system is presented for the many-valued propositional logic based on the conjunction interpreted as product, the coresponding implication (Goguen's implication) and the corresponding negation (Gödel's negation). Algebraic proof methods are used. The meaning for fuzzy logic (in the narrow sense) is shortly discussed.This article was processed by the author using the LATEX style filepljorlm from Springer-Verlag.  相似文献   

13.
I give a systematic presentation of a fairly large family of multiple-conclusion modal logics that are paraconsistent and/or paracomplete. After providing motivation for studying such systems, I present semantics and tableau-style proof theories for them. The proof theories are shown to be sound and complete with respect to the semantics. I then show how the “standard” systems of classical, single-conclusion modal logics fit into the framework constructed.  相似文献   

14.
LetL be one of the intuitionistic modal logics considered in [7] (or one of its extensions) and letM L be the algebraic semantics ofL. In this paper we will extend toL the equivalence, proved in the classical case (see [6]), among he weak Craig interpolation theorem, the Robinson theorem and the amalgamation property of varietyM L. We will also prove the equivalence between the Craig interpolation theorem and the super-amalgamation property of varietyM L. Then we obtain the Craig interpolation theorem and Robinson theorem for two intuitionistic modal logics, one ofS 4-type and the other one ofS 5-type, showing the super-amalgamation property of the corresponding algebraic semantics.  相似文献   

15.
We show that the type TZ of Z-torsors has the dependent universal property of the circle, which characterizes it up to a unique homotopy equivalence. The construction uses Voevodsky's Univalence Axiom and propositional truncation, yielding a stand-alone construction of the circle not using higher inductive types.  相似文献   

16.
Logical theories for representing knowledge are often plagued by the so-called Logical Omniscience Problem. The problem stems from the clash between the desire to model rational agents, which should be capable of simple logical inferences, and the fact that any logical inference, however complex, almost inevitably consists of inference steps that are simple enough. This contradiction points to the fruitlessness of trying to solve the Logical Omniscience Problem qualitatively if the rationality of agents is to be maintained. We provide a quantitative solution to the problem compatible with the two important facets of the reasoning agent: rationality and resource boundedness. More precisely, we provide a test for the logical omniscience problem in a given formal theory of knowledge. The quantitative measures we use are inspired by the complexity theory. We illustrate our framework with a number of examples ranging from the traditional implicit representation of knowledge in modal logic to the language of justification logic, which is capable of spelling out the internal inference process. We use these examples to divide representations of knowledge into logically omniscient and not logically omniscient, thus trying to determine how much information about the reasoning process needs to be present in a theory to avoid logical omniscience.  相似文献   

17.
We propose and investigate a uniform modal logic framework for reasoning about topology and relative distance in metric and more general distance spaces, thus enabling the comparison and combination of logics from distinct research traditions such as Tarski’s S4 for topological closure and interior, conditional logics, and logics of comparative similarity. This framework is obtained by decomposing the underlying modal-like operators into first-order quantifier patterns. We then show that quite a powerful and natural fragment of the resulting first-order logic can be captured by one binary operator comparing distances between sets and one unary operator distinguishing between realised and limit distances (i.e., between minimum and infimum). Due to its greater expressive power, this logic turns out to behave quite differently from both S4 and conditional logics. We provide finite (Hilbert-style) axiomatisations and ExpTime-completeness proofs for the logics of various classes of distance spaces, in particular metric spaces. But we also show that the logic of the real line (and various other important metric spaces) is not recursively enumerable. This result is proved by an encoding of Diophantine equations.  相似文献   

18.
This paper exhibits a general and uniform method to prove axiomatic completeness for certain modal fixpoint logics. Given a set Γ of modal formulas of the form γ(x,p1,…,pn), where x occurs only positively in γ, we obtain the flat modal fixpoint language L?(Γ) by adding to the language of polymodal logic a connective ?γ for each γΓ. The term ?γ(φ1,…,φn) is meant to be interpreted as the least fixed point of the functional interpretation of the term γ(x,φ1,…,φn). We consider the following problem: given Γ, construct an axiom system which is sound and complete with respect to the concrete interpretation of the language L?(Γ) on Kripke structures. We prove two results that solve this problem.First, let be the logic obtained from the basic polymodal by adding a Kozen-Park style fixpoint axiom and a least fixpoint rule, for each fixpoint connective ?γ. Provided that each indexing formula γ satisfies a certain syntactic criterion, we prove this axiom system to be complete.Second, addressing the general case, we prove the soundness and completeness of an extension of . This extension is obtained via an effective procedure that, given an indexing formula γ as input, returns a finite set of axioms and derivation rules for ?γ, of size bounded by the length of γ. Thus the axiom system is finite whenever Γ is finite.  相似文献   

19.
We start from the geometrical-logical extension of Aristotle’s square in [6,15] and [14], and study them from both syntactic and semantic points of view. Recall that Aristotle’s square under its modal form has the following four vertices: A is □α, E is , I is and O is , where α is a logical formula and □ is a modality which can be defined axiomatically within a particular logic known as S5 (classical or intuitionistic, depending on whether is involutive or not) modal logic. [3] has proposed extensions which can be interpreted respectively within paraconsistent and paracomplete logical frameworks. [15] has shown that these extensions are subfigures of a tetraicosahedron whose vertices are actually obtained by closure of by the logical operations , under the assumption of classical S5 modal logic. We pursue these researches on the geometrical-logical extensions of Aristotle’s square: first we list all modal squares of opposition. We show that if the vertices of that geometrical figure are logical formulae and if the sub-alternation edges are interpreted as logical implication relations, then the underlying logic is none other than classical logic. Then we consider a higher-order extension introduced by [14], and we show that the same tetraicosahedron plays a key role when additional modal operators are introduced. Finally we discuss the relation between the logic underlying these extensions and the resulting geometrical-logical figures.   相似文献   

20.
A Banach space is hereditarily finitely decomposable if it does not contain finite direct sums of infinite dimensional subspaces with arbitrarily large number of summands. Here we show that the class of all hereditarily finitely decomposable Banach spaces has the three-space property. Moreover we show that the corresponding class defined in terms of quotients has also the three-space property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号