首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this paper, we introduce a foundation for computable model theory of rational Pavelka logic (an extension of ?ukasiewicz logic) and continuous logic, and prove effective versions of some related theorems in model theory. We show how to reduce continuous logic to rational Pavelka logic. We also define notions of computability and decidability of a model for logics with computable, but uncountable, set of truth values; we show that provability degree of a formula with respect to a linear theory is computable, and use this to carry out an effective Henkin construction. Therefore, for any effectively given consistent linear theory in continuous logic, we effectively produce its decidable model. This is the best possible, since we show that the computable model theory of continuous logic is an extension of computable model theory of classical logic. We conclude with noting that the unique separable model of a separably categorical and computably axiomatizable theory (such as that of a probability space or an Lp Banach lattice) is decidable.  相似文献   

2.
In this paper we consider, from a computational point of view, the problem of classifying logics within the Leibniz and Frege hierarchies typical of abstract algebraic logic. The main result states that, for logics presented syntactically, this problem is in general undecidable. More precisely, we show that there is no algorithm that classifies the logic of a finite consistent Hilbert calculus in the Leibniz and in the Frege hierarchies.  相似文献   

3.
In this paper we introduce non-normal modal extensions of the sub-classical logics CLoN, CluN and CLaN, in the same way that S0.5 0 extends classical logic. The first modal system is both paraconsistent and paracomplete, while the second one is paraconsistent and the third is paracomplete. Despite being non-normal, these systems are sound and complete for a suitable Kripke semantics. We also show that these systems are appropriate for interpreting □ as “is provable in classical logic”. This allows us to recover the theorems of propositional classical logic within three sub-classical modal systems.  相似文献   

4.
Propositional and first-order bounded linear-time temporal logics (BLTL and FBLTL, respectively) are introduced by restricting Gentzen type sequent calculi for linear-time temporal logics. The corresponding Robinson type resolution calculi, RC and FRC for BLTL and FBLTL respectively are obtained. To prove the equivalence between FRC and FBLTL, a temporal version of Herbrand theorem is used. The completeness theorems for BLTL and FBLTL are proved for simple semantics with both a bounded time domain and some bounded valuation conditions on temporal operators. The cut-elimination theorems for BLTL and FBLTL are also proved using some theorems for embedding BLTL and FBLTL into propositional (first-order, respectively) classical logic. Although FBLTL is undecidable, its monadic fragment is shown to be decidable.  相似文献   

5.
What is a logic? Which properties are preserved by maps between logics? What is the right notion for equivalence of logics? In order to give satisfactory answers we generalize and further develop the topological approach of [4] and present the foundations of a general theory of abstract logics which is based on the abstract concept of a theory. Each abstract logic determines a topology on the set of theories. We develop a theory of logic maps and show in what way they induce (continuous, open) functions on the corresponding topological spaces. We also establish connections to well-known notions such as translations of logics and the satisfaction axiom of institutions [5]. Logic homomorphisms are maps that behave in some sense like continuous functions and preserve more topological structure than logic maps in general. We introduce the notion of a logic isomorphism as a (not necessarily bijective) function on the sets of formulas that induces a homeomorphism between the respective topological spaces and gives rise to an equivalence relation on abstract logics. Therefore, we propose logic isomorphisms as an adequate and precise notion for equivalence of logics. Finally, we compare this concept with another recent proposal presented in [2]. This research was supported by the grant CNPq/FAPESB 350092/2006-0.  相似文献   

6.
Glivenko-type theorems for substructural logics (over FL) are comprehensively studied in the paper [N. Galatos, H. Ono, Glivenko theorems for substructural logics over FL, Journal of Symbolic Logic 71 (2006) 1353-1384]. Arguments used there are fully algebraic, and based on the fact that all substructural logics are algebraizable (see [N. Galatos, H. Ono, Algebraization, parametrized local deduction theorem and interpolation for substructural logics over FL, Studia Logica 83 (2006) 279-308] and also [N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, in: Studies in Logic and the Foundations of Mathematics, vol. 151, Elsevier, 2007] for the details).As a complementary work to the algebraic approach developed in [N. Galatos, H. Ono, Glivenko theorems for substructural logics over FL, Journal of Symbolic Logic 71 (2006) 1353-1384], we present here a concise, proof-theoretic approach to Glivenko theorems for substructural logics. This will show different features of these two approaches.  相似文献   

7.
This paper presents a uniform and modular method to prove uniform interpolation for several intermediate and intuitionistic modal logics. The proof-theoretic method uses sequent calculi that are extensions of the terminating sequent calculus G4ip for intuitionistic propositional logic. It is shown that whenever the rules in a calculus satisfy certain structural properties, the corresponding logic has uniform interpolation. It follows that the intuitionistic versions of K and KD (without the diamond operator) have uniform interpolation. It also follows that no intermediate or intuitionistic modal logic without uniform interpolation has a sequent calculus satisfying those structural properties, thereby establishing that except for the seven intermediate logics that have uniform interpolation, no intermediate logic has such a sequent calculus.  相似文献   

8.
We investigate model theoretic characterisations of the expressive power of modal logics in terms of bisimulation invariance. The paradigmatic result of this kind is van Benthem’s theorem, which says that a first-order formula is invariant under bisimulation if, and only if, it is equivalent to a formula of basic modal logic. The present investigation primarily concerns ramifications for specific classes of structures. We study in particular model classes defined through conditions on the underlying frames, with a focus on frame classes that play a major role in modal correspondence theory and often correspond to typical application domains of modal logics. Classical model theoretic arguments do not apply to many of the most interesting classes-for instance, rooted frames, finite rooted frames, finite transitive frames, well-founded transitive frames, finite equivalence frames-as these are not elementary. Instead we develop and extend the game-based analysis (first-order Ehrenfeucht-Fraïssé versus bisimulation games) over such classes and provide bisimulation preserving model constructions within these classes. Over most of the classes considered, we obtain finite model theory analogues of the classically expected characterisations, with new proofs also for the classical setting. The class of transitive frames is a notable exception, with a marked difference between the classical and the finite model theory of bisimulation invariant first-order properties. Over the class of all finite transitive frames in particular, we find that monadic second-order logic is no more expressive than first-order as far as bisimulation invariant properties are concerned — though both are more expressive here than basic modal logic. We obtain ramifications of the de Jongh-Sambin theorem and a new and specific analogue of the Janin-Walukiewicz characterisation of bisimulation invariant monadic second-order for finite transitive frames.  相似文献   

9.
How, why and what for we should combine logics is perfectly well explained in a number of works concerning this issue. But the interesting question seems to be the nature and the structure of the general universe of possible combinations of logical systems. Adopting the point of view of universal logic in the paper the categorical constructions are introduced which along with the coproducts underlying the fibring of logics describe the inner structure of the category of logical systems. It is shown that categorically the universe of universal logic turns out to be a topos and a paraconsistent complement topos. This work was supported by Russian Foundation for Humanities via the Project ”The structure of Universal Logics”, grant No 06-03-00195a.  相似文献   

10.
The paper introduces semantic and algorithmic methods for establishing a variant of the analytic subformula property (called ‘the bounded proof property’, bpp) for modal propositional logics. The bpp is much weaker property than full cut-elimination, but it is nevertheless sufficient for establishing decidability results. Our methodology originated from tools and techniques developed on one side within the algebraic/coalgebraic literature dealing with free algebra constructions and on the other side from classical correspondence theory in modal logic. As such, our approach is orthogonal to recent literature based on proof-theoretic methods and, in a way, complements it.  相似文献   

11.
We propose and investigate a uniform modal logic framework for reasoning about topology and relative distance in metric and more general distance spaces, thus enabling the comparison and combination of logics from distinct research traditions such as Tarski’s S4 for topological closure and interior, conditional logics, and logics of comparative similarity. This framework is obtained by decomposing the underlying modal-like operators into first-order quantifier patterns. We then show that quite a powerful and natural fragment of the resulting first-order logic can be captured by one binary operator comparing distances between sets and one unary operator distinguishing between realised and limit distances (i.e., between minimum and infimum). Due to its greater expressive power, this logic turns out to behave quite differently from both S4 and conditional logics. We provide finite (Hilbert-style) axiomatisations and ExpTime-completeness proofs for the logics of various classes of distance spaces, in particular metric spaces. But we also show that the logic of the real line (and various other important metric spaces) is not recursively enumerable. This result is proved by an encoding of Diophantine equations.  相似文献   

12.
13.
Let X be a topological space and let F be a filter on N, recall that a sequence (xn)nN in X is said to be F-convergent to the point xX, if for each neighborhood U of x, {nN:xnU}∈F. By using F-convergence in ?1 and in Banach spaces, we characterize the P-filters, the P-filters+, the weak P-filters, the Q-filters, the Q-filters+, the weak Q-filters, the selective filters and the selective+ filters.  相似文献   

14.
 The paper studies Barwise's information frames and answers the John Barwise question: to find axiomatizations for the modal logics generated by information frames. We find axiomatic systems for (i) the modal logic of all complete information frames, (ii) the logic of all sound and complete information frames, (iii) the logic of all hereditary and complete information frames, (iv) the logic of all complete, sound and hereditary information frames, and (v) the logic of all consistent and complete information frames. The notion of weak modal logics is also proposed, and it is shown that the weak modal logics generated by all information frames and by all hereditary information frames are K and K4 respectively. To develop general theory, we prove that (i) any Kripke complete modal logic is the modal logic of a certain class of information frames and that (ii) the modal logic generated by any given class of complete, rarefied and fully classified information frames is Kripke complete. This paper is dedicated to the memory of talented mathematician John Barwise. Received: 7 May 2000 Published online: 10 October 2002 Key words or phrases: Knowledge presentation – Information – Information flow – Information frames – Modal logic-Kripke model  相似文献   

15.
We introduce a family of notions of interpolation for sentential logics. These concepts generalize the ones for substructural logics introduced in [5]. We show algebraic characterizations of these notions for the case of equivalential logics and study the relation between them and the usual concepts of Deductive, Robinson, and Maehara interpolation properties.  相似文献   

16.
In this paper we prove polyadic counterparts of the Hájek, Paris and Shepherdson's conservative extension theorems of Łukasiewicz predicate logic to rational Pavelka predicate logic. We also discuss the algebraic correspondents of the provability and truth degree for polyadic MV-algebras and prove a representation theorem similar to the one for polyadic Pavelka algebras.  相似文献   

17.
The logic with independent truth and falsehood operators TFL is proposed. In TFL(→) standard truth-conditions for the implication are adopted. Nevertheless the laws of classical logic are not valid. In this language more then 107 different binary connectives can be defined. So this logic can be treated as universal logic relatively to the class of sentential logics.  相似文献   

18.
In a modular approach, we lift Hilbert-style proof systems for propositional, modal and first-order logic to generalized systems for their respective team-based extensions. We obtain sound and complete axiomatizations for the dependence-free fragment FO(~) of Väänänen's first-order team logic TL, for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL, and for the corresponding logics of dependence, independence, inclusion and exclusion.As a crucial step in the completeness proof, we show that the above logics admit, in a particular sense, a semantics-preserving elimination of modalities and quantifiers from formulas.  相似文献   

19.
The logic is the sentential logic defined in the language with just implication → by the axiom of reflexivity or identity “” and the rule of Modus Ponens “from φ and to infer ψ”. The theorems of this logic are exactly all formulas of the form . We argue that this is the simplest protoalgebraic logic, and that in it every set of assumptions encodes in itself not only all its consequences but also their proofs. In this paper we study this logic from the point of view of abstract algebraic logic, and in particular we use it as a relatively natural counterexample to settle some open problems in this theory. It appears that this logic has almost no properties: it is neither equivalential nor weakly algebraizable; it does not have an algebraic semantics; it does not satisfy any form of the Deduction Theorem, other than the most general parameterized and local one that all protoalgebraic logics satisfy; it is not filter‐distributive; and so on. It satisfies some forms of the interpolation property but in a rather trivial way. Very few things are known about its algebraic counterpart, save that its intrinsic variety is the class of all algebras of the similarity type.  相似文献   

20.
The intuitive notion of evidence has both semantic and syntactic features. In this paper, we develop an evidence logic for epistemic agents faced with possibly contradictory evidence from different sources. The logic is based on a neighborhood semantics, where a neighborhood N indicates that the agent has reason to believe that the true state of the world lies in N. Further notions of relative plausibility between worlds and beliefs based on the latter ordering are then defined in terms of this evidence structure, yielding our intended models for evidence-based beliefs. In addition, we also consider a second more general flavor, where belief and plausibility are modeled using additional primitive relations, and we prove a representation theorem showing that each such general model is a p-morphic image of an intended one. This semantics invites a number of natural special cases, depending on how uniform we make the evidence sets, and how coherent their total structure. We give a structural study of the resulting ‘uniform’ and ‘flat’ models. Our main result are sound and complete axiomatizations for the logics of all four major model classes with respect to the modal language of evidence, belief and safe belief. We conclude with an outlook toward logics for the dynamics of changing evidence, and the resulting language extensions and connections with logics of plausibility change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号