首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   813篇
  免费   35篇
  国内免费   6篇
化学   642篇
晶体学   5篇
力学   34篇
数学   93篇
物理学   80篇
  2023年   4篇
  2022年   6篇
  2021年   16篇
  2020年   12篇
  2019年   19篇
  2018年   11篇
  2017年   10篇
  2016年   36篇
  2015年   15篇
  2014年   24篇
  2013年   53篇
  2012年   62篇
  2011年   70篇
  2010年   28篇
  2009年   49篇
  2008年   66篇
  2007年   58篇
  2006年   39篇
  2005年   43篇
  2004年   31篇
  2003年   42篇
  2002年   37篇
  2001年   12篇
  2000年   12篇
  1999年   4篇
  1998年   9篇
  1997年   8篇
  1996年   15篇
  1995年   3篇
  1994年   8篇
  1993年   6篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1986年   4篇
  1985年   7篇
  1984年   3篇
  1981年   4篇
  1980年   4篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1959年   1篇
  1923年   1篇
  1922年   1篇
排序方式: 共有854条查询结果,搜索用时 15 毫秒
1.
2.
The batch emulsion copolymerization of vinyl acetate with different vinyl silane functional monomers (vinyl trimethoxysilane [VTMS], vinyl triethoxysilane [VTES], and vinyl silanetriol [VSTO]) is studied. The nature of the silane strongly affects the development of the microstructure and crosslinking ability of the latexes. A combination of techniques (Soxhlet extraction, centrifugation, assymetric‐flow field flow fractionation AF4/MALS/RI) shows that the factor controlling the molar mass and crosslinking density is the degree of hydrolysis of the alkoxysilane, producing higher molar masses and degrees of crosslinking when the degree of hydrolysis is high. Thus, the copolymer containing VSTO produced a very crosslinked latex, the one with VTMS produced a latex with a low degree of crosslinking in the wet state that can yield high degrees of crosslinking upon drying, and the latex with VTES do not produce significant amounts of crosslinking neither before nor after drying.  相似文献   
3.
Cannabis sativa contains more than 500 constituents, yet the anticancer properties of the vast majority of cannabis compounds remains unknown. We aimed to identify cannabis compounds and their combinations presenting cytotoxicity against bladder urothelial carcinoma (UC), the most common urinary system cancer. An XTT assay was used to determine cytotoxic activity of C. sativa extracts on T24 and HBT-9 cell lines. Extract chemical content was identified by high-performance liquid chromatography (HPLC). Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and cell cycle, using stained F-actin and nuclei. Scratch and transwell assays were used to determine cell migration and invasion, respectively. Gene expression was determined by quantitative Polymerase chain reaction (PCR). The most active decarboxylated extract fraction (F7) of high-cannabidiol (CBD) C. sativa was found to contain cannabichromene (CBC) and Δ9-tetrahydrocannabinol (THC). Synergistic interaction was demonstrated between CBC + THC whereas cannabinoid receptor (CB) type 1 and type 2 inverse agonists reduced cytotoxic activity. Treatments with CBC + THC or CBD led to cell cycle arrest and cell apoptosis. CBC + THC or CBD treatments inhibited cell migration and affected F-actin integrity. Identification of active plant ingredients (API) from cannabis that induce apoptosis and affect cell migration in UC cell lines forms a basis for pre-clinical trials for UC treatment.  相似文献   
4.
5.
Recently developed transport equations for two-phase flow through porous media usually have a second term that has been included to account properly for interfacial coupling between the two flowing phases. The source and magnitude of such coupling is not well understood. In this study, a partition concept has been introduced into Kalaydjian's transport equations to construct modified transport equations that enable a better understanding of the role of interfacial coupling in two-phase flow through natural porous media. Using these equations, it is demonstrated that, in natural porous media, the physical origin of interfacial coupling is the capillarity of the porous medium, and not interfacial momentum transfer, as is usually assumed. The new equations are also used to show that, under conditions of steady-state flow, the magnitude of mobilities measured in a countercurrent flow experiment is the same as that measured in a cocurrent flow experiment, contrary to what has been reported previously. Moreover, the new equations are used to explicate the mechanism by which a saturation front steepens in an unstabilized displacement, and to show that the rate at which a wetting fluid is imbibed into a porous medium is controlled by the capillary coupling parameter, . Finally, it is argued that the capillary coupling parameter, , is dependent, at least in part, on porosity. Because a clear understanding of the role played by interfacial coupling is important to an improved understanding of two-phase flow through porous media, the new transport equations should prove to be effective tools for the study of such flow.  相似文献   
6.
7.
In this paper, we describe a numerical model to simulate the evolution in time of the hydrodynamics of water storage tanks, with particular emphasis on the time evolution of chlorine concentration. The mathematical model contains several ingredients particularly designed for this problem, namely, a boundary condition to model falling jets on free surfaces, an arbitrary Lagrangian–Eulerian formulation to account for the motion of the free surface because of demand and supply of water, and a coupling of the hydrodynamics with a convection–diffusion–reaction equation modeling the time evolution of chlorine. From the numerical point of view, the equations resulting from the mathematical model are approximated using a finite element formulation, with linear continuous interpolations on tetrahedra for all the unknowns. To make it possible, and also to be able to deal with convection‐dominated flows, a stabilized formulation is used. In order to capture the sharp gradients present in the chlorine concentration, particularly near the injection zone, a discontinuity capturing technique is employed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
ABSTRACT

The reaction of formic acid (HCOOH) with chlorine atom and amidogen radical (NH2) have been investigated using high level theoretical methods such BH&HLYP, MP2, QCISD, and CCSD(T) with the 6–311?+?G(2df,2p), aug-cc-pVTZ, aug-cc-pVQZ and extrapolation to CBS basis sets. The abstraction of the acidic and formyl hydrogen atoms of the acid by the two radicals has been considered, and the different reactions proceed either by a proton coupled electron transfer (pcet) and hydrogen atom transfer (hat) mechanisms. Our calculated rate constant at 298?K for the reaction with Cl is 1.14?×?10?13?cm3?molecule?1?s?1 in good agreement with the experimental value 1.8?±?0.12/2.0?×?10?13?cm3?molecule?1?s?1 and the reaction proceeds exclusively by abstraction of the formyl hydrogen atom, via hat mechanism, producing HOCO+ClH. The calculated rate constant, at 298?K, for the reaction with NH2 is 1.71?×?10?15?cm3?molecule?1?s?1, and the reaction goes through the abstraction of the acidic hydrogen atom, via a pcet mechanism, leading to the formation of HCOO+NH3.  相似文献   
9.
This paper in concerned with the linear theory of materials with memory that possess a double porosity structure. First, the formulation of the initial-boundary-value problem is presented. Then, a uniqueness result is established. The semigroup theory of linear operators is used to prove existence and continuous dependence of solutions. A minimum principle for the dynamical theory is also derived.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号