首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation of PLGA microspheres with different porous morphologies   总被引:1,自引:0,他引:1  
甘志华  王峰 《高分子科学》2015,33(1):128-136
Poly(D,L-lactide-co-glycolide)(PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell(denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin(BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.  相似文献   

2.
不同溶剂制备的聚乳酸多孔微球的形成机理   总被引:1,自引:0,他引:1  
利用改进的双乳液溶剂挥发法制备了多孔聚乳酸( PLA)微球.通过采用具有不同沸点和水溶性的有机溶剂制备得到不同多孔结构的PLA微球.结果发现以二氯甲烷、氯仿和甲苯为溶剂制备的微球具有相似的均匀多孔结构,而以乙酸乙酯制备的微球却具有中空结构和多孔的壳层.通过进一步的实验研究了溶剂种类对于微球多孔结构的影响.结果表明溶剂的...  相似文献   

3.
We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.  相似文献   

4.
This study focused on the influences of solvent removal method and wall polymer composition on microspheres characteristics in W/O/W double emulsion procedure. Monomethoxypoly(ethylene glycol)-b-poly- -lactide (PELA) microspheres containing bovine hemoglobin (BHb, a model protein) were prepared by four solvent removal methods, including solvent-evaporation at atmosphere, at reduced pressure, solvent-extraction and solvent-diffusion methods, where the last method used ethyl acetate (EA) as organic solvent and the others used methylene chloride (MC). The bio-activity of encapsulated BHb, encapsulation efficiency, particle size and surface morphology of microspheres were evaluated in relation to the influences of solvent removal method and PELA composition. BHb encapsulated by the W/O/W double emulsion–solvent diffusion method with EA as organic solvent displayed a bio-activity near to that of native BHb. The efficiency of BHb entrapment achieved by this method was much higher than those by other methods (ca. 90% versus 30%). When using this process, the copolymers with MPEG 2000 block (molecular weight of PEG block: 2000 g/mol) yielded much higher efficiencies of BHb entrapment than those with MPEG 5000 block (90% versus 36%). Copolymer composition had less impact on microsphere size, but had a pronounced effect on surface morphology of microspheres. This study suggests that the W/O/W double emulsion–solvent diffusion method with EA as organic solvent is an effective process to prepare microspheres containing therapeutic proteins, and that the PELA copolymers containing MPEG 2000 block are promising wall material for biodegradable microsphere protein delivery system.  相似文献   

5.
Chitosan microspheres were prepared by an emulsion crosslinking method using glutaraldehyde as the cross-linker. Two auxins were dissolved in ethyl benzoate and encapsulated into the microspheres. The best encapsulation efficiency for naphthalene-1-acetic acid and indole-3-acetic acid, respectively, are 68% and 56% and depends on the selection of the appropriate extent of crosslinker, crosslinking time, and the ratio of the oil/water phase. The microspheres were characterized by FTIR spectroscopy. Differential scanning calorimetry was applied to study the thermal stabilities, and scanning electron microscopy to investigate the morphology of the loaded microspheres. In-vitro release studies performed in buffered aqueous methanol at pH 7.4 indicated that the cumulative release rate of the auxins from the particles reaches a maximum (60%) after about 120?h. The release rate in water is higher than the one in methanol. Based on data for the correlation coefficient it is concluded that the drug release is controlled by a diffusion mechanism that follows a super Case-II transport scheme.
Figure
In this work, two auxins, e.g., naphthalene-1-acetic acid and indole-3-acetic acid, were encapsulated into chitosan microspheres by an emulsion crosslinking method. Furthermore, the encapsulation efficiency and the in-vitro release were discussed in detail indicating that the drug release was controlled by a diffusion mechanism that followed a super Case-II transport scheme  相似文献   

6.
Flurbiprofen loaded PCL/PVP blend microspheres were prepared by o/w solvent evaporation method using various concentrations of gelatin as emulsifying agent. Microsphere recovery decreased with a decrease in the concentration of the emulsifier in the dispersion. Encapsulation efficiency and drug loading of microspheres increased with decrease in concentration of emulsifying agent. Hydration rate, encapsulation efficiency and drug loading of microspheres increased with increase in concentration of PVP. Rheological properties showed free flowing nature of microspheres. SEM (Scanning electron microscope) revealed microspheres were discrete, spherical and became porous with decrease in concentration of emulsifying agent but smooth with higher concentration of emulsifying agent. FTIR (Fourier transform infrared spectroscopy) spectra of pure and encapsulated flurbiprofen in all formulation showed no significant difference in characteristic peaks, suggesting stability of flurbiprofen during encapsulation process. X-RD (X-ray powder diffractometry) of pure flurbiprofen shows sharp peaks, which decreases on encapsulation, indicating dispersion at molecular level and hence decrease in the crystallinity of drug in microspheres. Microspheres showed an enteric nature at pH 1.2 and a sustained release pattern at pH 6.8. Rapid drug release was observed in microspheres with higher concentration of PVP (polyvinylpyrrolidone), PVP acts as channeling agent. Formulation with low concentration of emulsifying agent also showed a fast release due to porous structure. Drug release kinetics followed zero order at pH 1.2 while at pH 6.8 Higuchi model was best fitted and was found non fickian.  相似文献   

7.
Temperature-responsive microspheres were fabricated for the purpose of releasing protein in responsive to surrounding temperature changes. Temperature-responsive polymer, Pluronic was synthesized into block copolymers of poly(epsilon-caprolactone)-Pluronic with two different chain lengths of poly(epsilon-caprolactone). Microspheres loaded with proteins were prepared by a W/O/W emulsion method. The surface morphology was examined by scanning electron microscopy, showing that microspheres with diblock copolymers had porous structures due to hydrophilicity of Pluronic blocks. After incubating the microsphere at 37 degrees C for 7 days, temperature-responsive protein release was monitored with alternating temperature changes between 20 and 37 degrees C. The protein release was attenuated when the microsphere was incubated at 20 degrees C but the release rate was recovered at 37 degrees C, confirming variable release rate according to the temperature changes. The variable release rate of protein was dependent on the length of poly(epsilon-caprolactone) blocks attached to Pluronic.  相似文献   

8.
This letter reports on the fabrication of hollow,porous and non-porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres(MSs) for the controlled release of protein and promotion of cell compatibility of tough hydrogels.PLGA MSs with different structures were prepared with modified double emulsion methods,using bovine serum albumin(BSA) as a porogen during emulsification.The release of the residual BSA from PLGA MSs was investigated as a function of the MS structure.The hollow PLGA MSs show a faster protein release than the porous MSs,while the non-porous MSs have the slowest protein release.Compositing the PLGA MSs with poly(vinyl alcohol)(PVA) hydrogels promoted chondrocyte adhesion and proliferation on the hydrogels.  相似文献   

9.
Poly-DL-lactide-poly(ethylene glycol) (PELA) microspheres containing Hepatitis B surface antigen (HBsAg) were elaborated by a solvent extraction method based on the formation of a double water/oil/water (w/o/w) emulsion. Microspheres were characterized in terms of morphology, size and size distribution, encapsulation efficiency, and the efficiency of microsphere formation (EMF). Transmission electron microscopy (TEM) and polyacrylamide gel electrophoresis (PAGE) were used to investigate the structural integrality of HBsAg encapsulated in PELA microspheres. The release profile was investigated by the measurement of antigen present in the release medium at various intervals. The PELA-10 microspheres displayed the highest antigen encapsulation efficiency (about 80%), and antigen molecules could be stabilized in the PELA-10 microspheres during the preparation process. It suggested that the PELA microspheres had a great potential as a new polymer adjuvant for HBsAg. The release of Hepatitis B surface antigen from poly-DL-lactide-poly(ethylene glycol) microspheres.  相似文献   

10.
Exenatide (synthetic exendin-4), a 39-amino acid peptide, was encapsulated in poly(DL-lactic-co-glycolic acid) (PLGA) microspheres as a sustained release delivery system for the therapy of type 2 diabetes mellitus. The microspheres were prepared by a double-emulsion solvent evaporation method and the particle size, surface morphology, drug encapsulation efficiency, in vitro release profiles and in vivo hypoglycemic activity were evaluated. The results indicated that the morphology of the exenatide PLGA microspheres presented as a spherical shape with smooth surface, and the particle sizes distributed from 5.8 to 13.6 μm. The drug encapsulation efficiency tested by micro-bicinchoninic acid (BCA) assay was influenced by certain parameters such as inner and outer aqueous phase volume, PLGA concentration in oil phase, polyvinyl alcohol (PVA) concentrations in outer aqueous phase. Moreover, in vitro release behaviors were also affected by some parameters such as polymer type, PLGA molecular, internal aqueous phase volume, PLGA concentration. The pharmacodynamics in streptozotocin (STZ)-induced diabetic mice suggested that, exenatide microspheres have a significant hypoglycemic activity within one month, and its controlling of plasma glucose was similar to that of exenatide solution injected twice daily with identical exenatide amount. In conclusion, this microsphere could be a well sustained delivery system for exenatide to treat type 2 diabetes mellitus.  相似文献   

11.
Relatively uniform-sized poly(lactide-co-ethylene glycol) (PELA) microspheres with high encapsulation efficiency were prepared rapidly by a novel method combining emulsion-solvent extraction and premix membrane emulsification. Briefly, preparation of coarse double emulsions was followed by additional premix membrane emulsification, and antigen-loaded microspheres were obtained by further solidification. Under the optimum condition, the particle size was about 1 mum and the coefficient of variation (CV) value was 18.9%. Confocal laser scanning microscope and flow cytometer analysis showed that the inner droplets were small and evenly dispersed and the antigen was loaded uniformly in each microsphere when sonication technique was occupied to prepare primary emulsion. Distribution pattern of PEG segment played important role on the properties of microspheres. Compared with triblock copolymer PLA-PEG-PLA, the diblock copolymer PLA-mPEG yielded a more stable interfacial layer at the interface of oil and water phase, and thus was more suitable to stabilize primary emulsion and protect coalescence of inner droplets and external water phase, resulting in high encapsulation efficiency (90.4%). On the other hand, solidification rate determined the time for coalescence during microspheres fabrication, and thus affected encapsulation efficiency. Taken together, improving the polymer properties and solidification rate are considered as two effective strategies to yield high encapsulation.  相似文献   

12.
采用原位溶胶-凝胶法在毛细管内壁上合成出均匀的纳米硅胶多孔层,对纳米硅胶颗粒进行了形貌表征,同时考察了不同反应条件下合成的纳米硅胶的比表面积、孔容和孔径的变化规律。先采用含氢硅油高温键合固化硅胶层,然后用无机盐淋洗钝化毛细管色谱柱,制备出纳米多孔层硅胶毛细管色谱柱。考察了所制备的纳米多孔层硅胶毛细管色谱柱对挥发性氟氯烃、水中氯代烃、含硫化合物以及低碳烃的分离特性。结果表明:所制备的纳米多孔层硅胶毛细管色谱柱具有良好的分离能力、一定的抗水性、稳定的色谱保留特性和良好的制柱重复性。  相似文献   

13.
This study focused on the fabrication of calcium phosphate (Ca-P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite scaffolds loaded with biomolecules using the selective laser sintering (SLS) technique and their evaluation. Ca-P/PHBV nanocomposite microspheres loaded with bovine serum albumin (BSA) as the model protein were fabricated using the double emulsion solvent evaporation method. The encapsulation efficiency of BSA in PHBV polymer microspheres and Ca-P/PHBV nanocomposite microspheres were 18.06 ± 0.86% and 24.51 ± 0.60%, respectively. The BSA loaded Ca-P/PHBV nanocomposite microspheres were successfully produced into three-dimensional porous scaffolds with good dimensional accuracy using the SLS technique. The nanocomposite microspheres served as protective carriers and maintained the bioactivity of BSA during SLS. The effects of SLS parameters such as laser power and scan spacing on the encapsulation efficiency of BSA in the scaffolds and in vitro BSA release were studied. An initial burst release was observed, which was followed by a slow release of BSA. After 28-day release, The PHBV matrix was slightly degraded after 28-day in vitro release study. It was shown that nanocomposite scaffolds with controlled architecture obtained via SLS could be incorporated with biomolecules, enhancing them with more functions for bone tissue engineering application or making them suitable for localized delivery of therapeutics.  相似文献   

14.
作为细胞微载体的明胶基缓释微球的制备   总被引:7,自引:0,他引:7  
用改良的乳化冷凝法制备载牛血清蛋白(BSA)的大粒径明胶微球. 结果表明, 明胶水溶液的质量分数为25%、水相与油相体积比3∶20、搅拌速度300 r/min、交联剂用0.1 mL质量分数为25%的戊二醛、 表面活性剂用0.1 g span-80为制备平均直径约250 μm明胶微球的理想条件. 所制备微球的后处理方法不同, 则明胶微球的表面形貌也不同, 细胞粘附率不同. 空白明胶微球在体外可以完全降解, 载BSA的明胶微球对BSA具有良好的缓释性, 释放时间可长达30 d. 显微镜观察成纤维细胞在明胶微载体上生长良好.  相似文献   

15.
采用膜乳化-液中干燥法制备出担载二甲基砜(MSM)的聚乳酸(PLA)微球(PLA/MSM), 并研究了膜孔径、 搅拌转速和MSM浓度对载药微球形貌、 尺寸、 载药量、 体外释放及细胞活性的影响; 采用场发射环境扫描电子显微镜(ESEM)观察微球形貌、 尺寸及分布, 用等离子体发射光谱(ICP-AES)法检测PLA/MSM微球载药量、 包封率及体外释放, 采用ESEM观察微球内部结构, 并通过体外细胞培养和噻唑蓝(MTT)法检测MC-3T3-E1细胞的增殖能力. 研究结果表明, 膜乳化法制备的载药微球规整, 呈典型的圆球状, 表面光滑, 内部有多孔结构. 当膜孔径为5.1 μm且搅拌转速为500 r/min时, PLA/MSM微球大小更为均一; 当体系中MSM质量分数为8.6%时, 载药量可达到77.43%. 随着膜孔径减小及药物浓度的增加, 体外释放速率加快, 但初期均无明显的突释现象, 约10 d后累积释放量达到89.2%. 细胞实验结果显示, 在膜孔径为5.1 μm且MSM质量分数为8.6%的条件下, 制备的载药微球在细胞培养7 d时表现出明显的促增殖作用.  相似文献   

16.
The synthesis of a unimolecular reverse micelle ( 3 ) consisting of hyperbranched D -glucan as the core and L -leucine ethyl ester as the shell was accomplished through the carbamation reaction of the hyperbranched D -glucan ( 1 ) with the N-carbonyl L -leucine ethyl ester ( 2 ) in pyridine at 100 °C. The polymer 3 was soluble in a large variety of organic solvents, such as methanol, acetone, chloroform, and ethyl acetate, and insoluble in water, which remarkably differed from the solubility of 1 . The solubilities of 3 were also changed by the substitution degrees of the L -leucine moiety. The encapsulation ability of 3 toward water-soluble dyes has been investigated. These results indicated that 3 was a unimolecular reverse micelle with an encapsulation ability toward hydrophilic dye molecules. In addition, 3 showed an molecular size-selective encapsulation ability.  相似文献   

17.
Hierarchically nanostructured porous hollow microspheres of hydroxyapatite (HAP) are a promising biomaterial, owing to their excellent biocompatibility and porous hollow structure. Traditionally, synthetic hydroxyapatite is prepared by using an inorganic phosphorus source. Herein, we report a new strategy for the rapid, sustainable synthesis of HAP hierarchically nanostructured porous hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through a microwave‐assisted hydrothermal method. The as‐obtained products are characterized by powder X‐ray diffraction (XRD), Fourier‐transform IR (FTIR) spectroscopy, SEM, TEM, Brunauer–Emmett–Teller (BET) nitrogen sorptometry, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). SEM and TEM micrographs show that HAP hierarchically nanostructured porous hollow microspheres consist of HAP nanosheets or nanorods as the building blocks and DLS measurements show that the diameters of HAP hollow microspheres are within the range 0.8–1.5 μm. The specific surface area and average pore size of the HAP porous hollow microspheres are 87.3 m2g?1 and 20.6 nm, respectively. The important role of creatine phosphate disodium salt and the influence of the experimental conditions on the products were systematically investigated. This method is facile, rapid, surfactant‐free and environmentally friendly. The as‐prepared HAP porous hollow microspheres show a relatively high drug‐loading capacity and protein‐adsorption ability, as well as sustained drug and protein release, by using ibuprofen as a model drug and hemoglobin (Hb) as a model protein, respectively. These experiments indicate that the as‐prepared HAP porous hollow microspheres are promising for applications in biomedical fields, such as drug delivery and protein adsorption.  相似文献   

18.
The adsorption of spin-labelled poly(vinyl acetate) from dilute solutions in ethyl acetate, chloroform and toluene onto three silica adsorbents of different surface silanol contents was studied. The adsorption capacities of the three silica samples, which decreased with decreasing surface silanol content, were dependent on the nature of the solvent, being greatest in the poor solvent toluene and least in the good solvent ethyl acetate. The ESR spectra of the polymer adsorbed on the silica of highest silanol content suggested that the polymer had a relatively flat conformation when toluene or chloroform was solvent and a more looped conformation when ethyl acetate was solvent. With the silica of intermediate silanol content, the polymer adsorbed from chloroform solution also had a loopy conformation. The silica of lowest silanol content was prepared by treating the first silica absorbent with trimethylchlorosilane. The line-shapes in the ESR spectrum of the labelled polymer adsorbed on this modified silica indicated a change in mode of adsorption.  相似文献   

19.
Biodegradable microspheres have been widely used in drug/protein delivery system. In this paper, a modified ionotropic gelation method combined with a high voltage electrostatic field was developed to prepare protein-loaded chitosan microspheres. Bovine serum albumin (BSA) was chosen as a model protein. The preparation process and major parameters were discussed and optimized. The morphology, particle size, encapsulation efficiency and in vitro release behavior of the prepared microspheres were investigated. The results revealed that the microspheres exhibited good sphericity and dispersity when the mixture of sodium tripolyphosphate (TPP) and ethanol was applied as coagulation solution. Higher encapsulation efficiency (>90%) was achieved for the weight ratio of BSA to chitosan below 5%. 35% of BSA was released from the microspheres cured in 3% coagulation solution, and more than 50% of BSA was released from the microspheres cured in 1% coagulation solution at pH 8.8. However, only 15% of BSA was released from the microspheres cured in 1% coagulation solution at pH 4. The results suggested that ionotropic gelation method combined with a high voltage electrostatic field will be an effective method for fabricating chitosan microspheres for sustained delivery of protein.  相似文献   

20.
索进平 《高分子科学》2015,33(7):955-963
PLGA, m PEG diblock copolymer was synthesized by bulk ring-opening polymerization method. The double emulsion solvent evaporation method was used to prepare bovine serum albumin(BSA)-loaded microspheres. Optical microscopy was used to observe the whole microsphere fabrication process. It is confirmed that the proportion of inner aqueous phase is one of the most critical factors that determines the morphology of microspheres. Double emulsion droplets which have appropriate amount of inner aqueous phase can form closed and dense microspheres, while, too much inner aqueous phase will cause a collapse of the double emulsion droplets, resulting in a loss of drug. The proportion of inner aqueous phase was varied to prepare microspheres of different morphology. The results show that with increasing the amount of inner aqueous phase, a higher percent of broken microspheres and lower encapsulation efficiency appeared, and also, a more severe initial burst release and faster release rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号