首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In this work we extend to infinite dimensions a previous result of Lyascenko given in finite dimensions for a class of Lipschitz functions. In particular, this extension substitutes the class of Lipschitz functions by a class of Hölder functions. Then we consider applications of these results to analyze its relation with the Markus–Yamabe Conjecture in infinite dimensions. We discuss in detail a celebrated example of Cima et al. ( Adv Math 131(2): 453–457, 1997) of a nonlinear system in dimension three whose Jacobian has a unique eigenvalue \(-1\) of multiplicity 3, and yet an explicit unbounded solution as \(t \rightarrow \infty \) exists. We also present explicit solutions of the same equation that tends to 0 as \(t \rightarrow \infty \). Then we look at this conjecture by considering not the properties of the whole system, but instead the properties of some solutions. Finally we present an application in an infinite dimensional Hilbert space, where we use different techniques to study the local and global asymptotic stabilities.  相似文献   

2.
In 1996, Ricardo Ricardo Mañé discovered that Mather measures are in fact the minimizers of a “universal” infinite dimensional linear programming problem. This fundamental result has many applications, of which one of the most important is to the estimates of the generic number of Mather measures. Mañé obtained the first estimation of that sort by using finite dimensional approximations. Recently, we were able, with Gonzalo Contreras, to use this method of finite dimensional approximation in order to solve a conjecture of John Mather concerning the generic number of Mather measures for families of Lagrangian systems. In the present paper we obtain finer results in that direction by applying directly some classical tools of convex analysis to the infinite dimensional problem. We use a notion of countably rectifiable sets of finite codimension in Banach (and Frechet) spaces which may deserve independent interest.  相似文献   

3.
This paper deals with the existence and multiplicity of periodic solutions to delay differential equations of the form
$\dot{z}(t)=-f(z(t-1))- f(z(t-2))-\cdots- f(z(t-2n+1)) $
where \({z\in {\bf R}^N, f\in C({\bf R}^{N}, {\bf R}^N)}\). By using the S 1 pseudo geometrical index theory in the critical point theory, some known results for Kaplan–Yorke type differential delay equations are generalized to higher dimensional case. As a result, the Kaplan–Yorke’s conjecture is proved to be true in the case of higher dimensional systems.
  相似文献   

4.
Eshelby showed that if an inclusion is of elliptic or ellipsoidal shape then for any uniform elastic loading the field inside the inclusion is uniform. He then conjectured that the converse is true, that is, that if the field inside an inclusion is uniform for all uniform loadings, then the inclusion is of elliptic or ellipsoidal shape. We call this the weak Eshelby conjecture. In this paper we prove this conjecture in three dimensions. In two dimensions, a stronger conjecture, which we call the strong Eshelby conjecture, has been proved: if the field inside an inclusion is uniform for a single uniform loading, then the inclusion is of elliptic shape. We give an alternative proof of Eshelby’s conjecture in two dimensions using a hodographic transformation. As a consequence of the weak Eshelby’s conjecture, we prove in two and three dimensions a conjecture of Pólya and Szegö on the isoperimetric inequalities for the polarization tensors (PTs). The Pólya–Szegö conjecture asserts that the inclusion whose electrical PT has the minimal trace takes the shape of a disk or a ball.  相似文献   

5.
We considered the longtime behavior of solutions of a coupled lattice dynamical system of Klein-Gordon-Schroedinger equation (KGS lattice system). We first proved the existence of a global attractor for the system considered here by introducing an equivalent norm and using "End Tails" of solutions. Then we estimated the upper bound of the Kolmogorov delta-entropy of the global attractor by applying element decomposition and the covering property of a polyhedron by balls of radii delta in the finite dimensional space. Finally, we presented an approximation to the global attractor by the global attractors of finite-dimensional ordinary differential systems.  相似文献   

6.
For a long time it has been studied whether rank-one convexity and quasiconvexity give rise to different families of constitutive relations in planar nonlinear elasticity. Stated in 1952 the Morrey conjecture says that these families are different, but no example has come forward to prove it. Now we attack this problem by deriving a specialized optimization algorithm based on two ingredients: first, a recently found necessary condition for the quasiconvexity of fourth-degree polynomials that distinguishes between both classes in the three dimensional case, and secondly, upon a characterization of rank-one convex fourth-degree polynomials in terms of infinitely many constraints.After extensive computational experiments with the algorithm, we believe that in the planar case, the necessary condition mentioned above is also necessary for the rank-one convexity of fourth-degree polynomials. Hence the question remains open.  相似文献   

7.
Dispersion analysis of discrete solutions to the shallow water equations has been extensively used as a tool to define the relationships between frequency and wave number and to determine if an algorithm leads to a dual wave number response and near 2Δx oscillations. In this paper, we explore the application of two‐dimensional dispersion analysis to cluster based and Galerkin finite element‐based discretizations of the primitive shallow water equations and the generalized wave continuity equation (GWCE) reformulation of the harmonic shallow water equations on a number of grid configurations. It is demonstrated that for various algorithms and grid configurations, contradictions exist between the results of one‐dimensional and two‐dimensional dispersion analysis as a result of subtle changes in the mass matrix. Numerical experiments indicate that the two‐dimensional dispersion analysis correctly predicts the existence and onset of near 2Δx noise in the solution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we describe a new method for the three‐dimensional steady incompressible Navier–Stokes equations, which is called the dimension split method (DSM). The basic idea of DSM is that the three‐dimensional space is split up into a cluster of two‐dimensional manifolds and then the three‐dimensional solution is approximated by the solutions on these two‐dimensional manifolds. Through introducing some technologies, such as SUPG stabilization, multigrid method, and such, we firstly make DSM feasible in the computation of real flow. Because of split property of DSM, all computation is carried out on these two‐dimensional manifolds, namely, a series of two‐dimensional problems only need to be solved in the computation of three‐dimensional problem, which greatly reduces the difficulty and the computational cost in the mesh generation. Moreover, these two‐dimensional problems can be computed simultaneously and a coarse‐grained parallel algorithm would be constructed, whereas the two‐dimensional manifold is considered as the computation unit. In the last, we explore the behavior and the accuracy of the proposed method in two numerical examples. Firstly, error estimates, performance of multigrid method, and parallel algorithm are well‐demonstrated by the known analytical solution case. Secondly, the computations of three‐dimensional lid‐driven cavity flows with different Reynolds numbers are compared with other numerical simulations. Results show that the present implementation is able to exhibit good stability and accuracy properties for real flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We study a model inspired by the Oldroyd-B equations for viscoelastic fluids. The objective is to better understand the nonlinear coupling between the stress and velocity fields in viscoelastic flows, and thus gain insight into the reasons that cause the loss of accuracy of numerical computations at high Weissenberg number. We derive a model system by discarding the stress-advection and stress-relaxation terms in the Oldroyd-B model. The reduced (unphysical) model, which bears some resemblance to a viscoelastic solid, only retains the stretching of the stress due to velocity gradients and the induction of velocity by the stress field. Our conjecture is that such a system always evolves toward an equilibrium in which the stress builds up such to cancel the external forces. This conjecture is supported by numerous simulations. We then turn our attention to a finite dimensional model (i.e., a set of ordinary differential equations) that has the same algebraic structure as our model system. Numerical simulations indicate that the finite-dimensional analog has a globally attracting equilibrium manifold. In particular, it is found that subsets of the equilibrium manifold may be unstable, leading to a “peaking” behavior, where trajectories are repelled from the equilibrium manifold at one point, and are eventually attracted to a stable equilibrium point on the same manifold. Generalizations and implications to solutions of the Oldroyd-B model are discussed.  相似文献   

10.
Summary A boundary integral equation method is proposed for the solution of viscous recirculating flows with free surfaces. In particular the method is applied to thermocapillary convection and to drop formation, both in micro-gravity conditions, the latter to test its capability to handle real unsteady problems.The presence of non linear terms in Navier-Stokes equations leads to a volume integral, which has to be approximated by a linearization procedure.Several numerical results for thermocapillary flows, both with fixed and moving free surface, are discussed in comparison with previously obtained finite difference solutions. Some preliminary results, and in particular the time evolution of the free surface shape, are also presented for the drop formation problem. Only plane two dimensional fields are considered for both problems.
Sommario Si propone un metodo basato sulla soluzione di equazioni integrali di contorno per flussi viscosi con superficie libera. Tale metodo è applicato allo studio della convezione termocapillare ed al processo di formazione di una goccia, entrambi in condizioni di microgravità. La presenza dei termini non lineari nell'equazione di Navier-Stokes comporta un integrale di volume che viene approssimato mediante un processo di linearizzazione.Risultati numerici per flussi termocapillari con superficie libera sia fissa che mobile sono confrontati con altri ottenuti in precedenza con un metodo alle differenze finite. Si presentano inoltre alcuni risultati preliminari sul problema della formazione della goccia ed in particolare l'evoluzione nel tempo della configurazione geometrica della superficie libera. Nei due casi si analizzano solo campi bidimensionali.


Presented at the VII National Conference AIDAA, Naples, September 1983.

In leave of absence from Tianjin University, China.  相似文献   

11.
Wei  Tengda  Li  Xiaodi  Stojanovic  Vladimir 《Nonlinear dynamics》2021,103(2):1733-1755

In this paper, we focus on the global existence–uniqueness and input-to-state stability of the mild solution of impulsive reaction–diffusion neural networks with infinite distributed delays. First, the model of the impulsive reaction–diffusion neural networks with infinite distributed delays is reformulated in terms of an abstract impulsive functional differential equation in Hilbert space and the local existence–uniqueness of the mild solution on impulsive time interval is proven by the Picard sequence and semigroup theory. Then, the diffusion–dependent conditions for the global existence–uniqueness and input-to-state stability are established by the vector Lyapunov function and M-matrix where the infinite distributed delays are handled by a novel vector inequality. It shows that the ISS properties can be retained for the destabilizing impulses if there are no too short intervals between the impulses. Finally, three numerical examples verify the effectiveness of the theoretical results and that the reaction–diffusion benefits the input-to-state stability of the neural-network system.

  相似文献   

12.
Shi  Z. C.  Shang  Y.  Zhang  X. F.  Wang  G. 《Experimental Mechanics》2021,61(8):1237-1247
Background

Camera calibration is an essential step for the optical measurement method used in the experimental mechanics. Most plumb line methods focus on solving lens distortions without considering camera intrinsic and extrinsic parameters.

Objective

In this paper, we propose a full camera calibration method to estimate the camera parameters, including camera intrinsic parameters, extrinsic parameters and lens distortion parameters, from a single image with six or more non-coplanar lines.

Methods

We parameterize the 3D lines with the intersection of two planes that allow the direct linear transformation of the lines(DLT-Lines). Based on the DLT-Lines, the projection matrix is estimated linearly, and then the camera intrinsic and extrinsic parameters are extracted from the matrix. The relationship between the distorted 2D lines and the distortion coefficients is derived, based on which the distortion coefficients can be solved linearly. In the last step, a non-linear optimization algorithm is used to jointly refine all the camera parameters, including the distortion coefficients.

Results

Both synthetic and real data are used to evaluate the performance of our method, which demonstrates that the proposed method can calibrate the cameras with radial and tangential distortions accurately.

Conclusions

We propose a DLT-lines based camera calibration method for experimental mechanics. The proposed method can calibrate all the camera parameters from a single image.

  相似文献   

13.
We examine the following conjecture concerning equilibrium instability for con-servative systems: if the potential is analytic and has no minimum at the origin, the vanishing solution is unstable. It is well-known that for a system with two degrees of freedom, this conjecture is true if the Hessian matrix of the potential is not zero. We prove that the conjecture is still true if the Hessian matrix is zero and the third-order terms of the potential do not constitute a perfect cube. Then, for an n-dimensional system, we extend a result of Koiter to the case of a potential for which the Hessian matrix has (n?2) strictly positive eigenvalues and two zero eigenvalues.  相似文献   

14.
In this paper, we prove an infinite dimensional KAM theorem. As an application, it is shown that there are many real-analytic small-amplitude linearly-stable quasi-periodic solutions for higher dimensional nonlinear Schrödinger equations with outer force
$$\begin{aligned} iu_t-\triangle u +M_\xi u+f(\bar{\omega }t)|u|^2u=0, \quad t\in {{\mathbb R}}, x\in {{\mathbb T}}^d \end{aligned}$$
where \(M_\xi \) is a real Fourier multiplier,\(f({\bar{\theta }})({\bar{\theta }}={\bar{\omega }} t)\) is real analytic and the forced frequencies \(\bar{\omega }\) are fixed Diophantine vectors.
  相似文献   

15.
Jin  Y.  Ren  Q.  Liu  J.  Zhang  Y.  Zheng  H.  Zhao  P. 《Experimental Mechanics》2022,62(5):761-767
Background

As a one-atom-thick material, the mechanical loading of graphene in large scale remains a challenge, and the maximum tensile strain that can be realized is through a flexible substrate, but only with a value of 1.8% due to the weak interfacial stress transfer.

Objective

Aims to illustrate the interface reinforcement brought by formvar resins as a buffering layer between graphene and substrates.

Methods

Single crystal graphene transferred to different substrates, applied with uniaxial stretching to compare the interface strength, and finite element analysis was performed to simulate tensile process for studying the influence of Poisson’s ratio of the buffering layer for interface reinforcement.

Results

In this work we use formvar resins as a buffering layer to achieve a maximum uniaxial tensile strain of 3.3% in graphene, close to the theoretical limit (3.7%) that graphene can achieve by flexible substrate stretching. The interface reinforcement by formvar is significantly higher than that by other polymers, which is attributed to the liquid–solid phase transition of formvar for more conformal interfacial contact and its suitable Poisson’s ratio with graphene to avoid its buckling along the transverse direction.

Conclusions

We believe that these results can provide guidance for the design of substrates and interfaces for graphene loading, as well as the support for mechanics analysis of graphene-based flexible electronic devices.

  相似文献   

16.
SUMMARY

Analysis/design calculations of transonic flow are discussed and several improvements are made. The nonisentropic potential method is used to calculate the inviscid transonic flow analysis problem instead of the traditional potential method. An inverse integral 3D boundary layer method is used to calculate the boundary layer in the viscous transonic flow analysis problem. The viscous/inviscid interaction calculations are carried out by a semi-inverse coupling scheme. In design problem calculations, an improved residual-correction method is used. Three individual methods are combined in a global algorithm and computing code. The improvements speed up the convergence, increase applicability and computational efficiency. Some numerical results are given to illustrate that the present method provides an effective engineering tool of high accuracy and efficiency in three dimensional transonic analysis and design situations.  相似文献   

17.
The Amann–Conley–Zehnder (ACZ) reduction is a global Lyapunov–Schmidt reduction for PDEs based on spectral decomposition. ACZ has been applied in conjunction to diverse topological methods, to derive existence and multiplicity results for Hamiltonian systems, for elliptic boundary value problems, and for nonlinear wave equations. Recently, the ACZ reduction has been translated numerically for semilinear Dirichlet problems and for modeling molecular dynamics, showing competitive performances with standard techniques. In this paper, we apply ACZ to a class of nonlinear wave equations in , attaining to the definition of a finite lattice of harmonic oscillators weakly nonlinearly coupled exactly equivalent to the continuum model. This result can be thought as a thermodynamic limit arrested at a small but finite scale without residuals. Reduced dimensional models reveal the macroscopic scaled features of the continuum, which could be interpreted as collective variables.   相似文献   

18.
We have developed a new divergence preserving method for the reconstruction of the Cartesian components of a vector field from the orthogonal projection of a vector field to the normals to edges in two dimensional. In this method, discrete divergences computed from the nodal components and from the normal ones are exactly the same. Our new method consists of two stages. At the first stage, we use an extended version of the local procedure described in [J. Comput. Phys., 139 :406–409, 1998] to obtain a ‘reference’ nodal vector. This local procedure is exact for linear vector fields; however, the discrete divergence is not preserved. Then, we formulate a constrained optimization problem, in which this reference vector plays the role of a target, and the divergence constraints are enforced by using Lagrange multipliers. It leads to the solution of ‘elliptic’ like discrete equations for the cell‐centered Lagrange multipliers. The new global divergence preserving method is exact for linear vector fields. We describe all details of our new method and present numerical results, which confirm our theory. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
We present the extension of our wall-laws developed for low-speed flows to super-and hyper-sonic configurations. In particular, we are interested in flows over isothermal walls and in the modeling of heat transfer. We recall the main steps of the development:

?Obtaining generalized wall functions for low-speed fluids, valid for all y +.

?Taking into account transversal effects in wall-laws.

?Accounting for the compressible feature of the flow on adiabatic walls without using information on the local boundary layer structure, for instance its thickness, but only using information available at the fictitious wall.

?Taking into account thermal effects on isothermal walls. In particular, the heat flux at the real wall is obtained by an a posteriori evaluation using information at the fictitious one.

?Only using information available on unstructured meshes and avoiding the information coming from a Cartesian hypothesis for the mesh in near-wall regions.

These ingredients are validated on hyper-sonic configurations on adiabatic and isothermal walls for expansion and compression ramps.  相似文献   

20.
Zhou  Xueyong  Cui  Jingan 《Nonlinear dynamics》2011,63(4):779-792

In this paper, a delay-differential mathematical model that described HIV infection of CD4+ T cells is analyzed. The effect of time delay on stability of the equilibria of the infection model has been studied. And the sufficient criteria for stability switch of the infected equilibrium and the local and global asymptotic stability of the uninfected equilibrium are given. By using the geometric stability switch criterion in the delay-differential system with delay-dependent parameters, we present that stable equilibria become unstable as the time delay increases. Numerical simulations are carried out to explain the mathematical conclusions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号