首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Treatment of U(acac)4 with the hexadentate Schiff base H2L(i) gave the [UL(i)2] complexes 1-4 [H2L1=N,N'-bis(3-methoxysalicylidene)-2-methyl-1,2-propanediamine, H2L2=N,N'-bis(3-methoxysalicylidene)-1,2-phenylenediamine, H2L3=N,N'-bis(3-methoxysalicylidene)-2-aminobenzylamine and H2L4=N,N'-bis(3-methoxysalicylidene)-2,2-dimethyl-1,3-propanediamine for 1-4, respectively]. The [U(L(i))(acac)2] compounds could not be isolated because of their ready disproportionation into [UL(i)2] and U(acac)4. Compounds 2 and 4 adopt a meridional configuration in the solid state and in solution, while exists in solution as the two equilibrating meridional and sandwich isomers and crystallizes in the meridional isomeric form. Reaction of U(acac)4 with H4L5 afforded the expected compound [U(H2L5)(acac)2] (5) [H4L5=N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine] but, in the presence of H4L6 and H4L7, U(acac)4 was transformed in a serendipitous and reproducible manner into the tri- and tetranuclear U(IV) complexes [U3(L6)(HL6)2(acac)2] (6) and [U4(HL7)4(H2L7)2] (7) [H4L6=N,N'-bis(3-hydroxysalicylidene)-1,2-phenylenediamine and H4L7=N,N'-bis(3-hydroxysalicylidene)-2-aminobenzylamine]. The crystal structures of 6.3thf and 7.5thf show the assembling role of the Schiff-base ligands.  相似文献   

2.
The reactions of potentially hexadentate H2bbpen (N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)-ethylenediamine, H2L1), H2(Cl)bbpen (N,N'-bis(5-chloro-2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)ethylenediamine, H2L2), and H2(Br)bbpen (N,N'-bis(5-bromo-2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)ethylenediamine, H2L3) with Ln(III) ions in the presence of a base in methanol resulted in three types of complexes: neutral mononuclear ([LnL(NO3)]), monocationic dinuclear ([Ln2L2(NO3)]+), and monocationic trinuclear ([Ln3L2(X)n(CH3OH)]+), where X = bridging (CH3COO-) and bidentate ligands (NO3-, CH3COO-, ClO4-) and n is 4. The formation of a complex depends on the base (hydroxide or acetate) and the size of the respective Ln(III) ion. All complexes were characterized by infrared spectroscopy, mass spectrometry, and elemental analyses; in some cases, X-ray diffraction studies were also performed. The structures of the neutral mononuclear [Yb(L1)(NO3)], dinuclear [Pr2(L1)2(NO3)(H2O)]NO3.CH3OH and [Gd2(L1)2(NO3)]NO3.CH3OH.3H2O, and trinuclear [Gd3(L3)2(CH3COO)4(CH3OH)]ClO4.5CH3OH and [Sm3(L1)2(CH3COO)2(NO3)2(CH3OH)]NO3.CH3OH.3.65H2O were solved by X-ray crystallography. The [LnL(NO3)] or [Ln2L2(NO3)]+ complexes could be converted to [Ln3L2(X)n(CH3OH)]+ complexes by the addition of 1 equiv of a Ln(III) salt and 2-3 equiv of sodium acetate in methanol. The trinuclear complexes were found to be the most stable of the three types, which was evident from the presence of the intact monocationic high molecular weight parent peaks ([Ln3L2(X)n]+) in the mass spectra of all the trinuclear complexes and from the ease of conversion from the mononuclear or dinuclear to the trinuclear species. The incompatibility of the ligand denticity with the coordination requirements of the Ln(III) ions was proven to be a useful tool in the construction of multinuclear Ln(III) metal ion arrays.  相似文献   

3.
The unsymmetrical tridentate benzimidazole-pyridine-carboxamide units in ligands L1-L4 react with trivalent lanthanides, Ln(III), to give the nine-co-ordinate triple-helical complexes [Ln(Li)3]3+ (i = 1-4) existing as mixtures of C3-symmetrical facial and C1-symmetrical meridional isomers. Although the beta13 formation constants are 3-4 orders of magnitude smaller for these complexes than those found for the D3-symmetrical analogues [Ln(Li)3]3+ (i = 5-6) with symmetrical ligands, their formation at the millimolar scale is quantitative and the emission quantum yield of [Eu(L2)3]3+ is significantly larger. The fac-[Ln(Li)3]3+ <--> mer-[Ln(Li)3]3+ (i = 1-4) isomerisation process in acetonitrile is slow enough for Ln = Lu(III) to be quantified by 1H NMR below room temperature. The separation of enthalpic and entropic contributions shows that the distribution of the facial and meridional isomers can be tuned by the judicious peripheral substitution of the ligands affecting the interstrand interactions. Molecular mechanics (MM) calculations suggest that one supplementary interstrand pi-stacking interaction stabilises the meridional isomers, while the facial isomers benefit from more favourable electrostatic contributions. As a result of the mixture of facial and meridional isomers in solution, we were unable to obtain single crystals of 1:3 complexes, but the X-ray crystal structures of their nine-co-ordinate precursors [Eu(L1)2(CF3SO3)2(H2O)](CF3SO3)(C3H5N)2(H2O) (6, C45H54EuF9N10O13S3, monoclinic, P2(1)/c, Z = 4) and [Eu(L4)2(CF3SO3)2(H2O)](CF3SO3)(C4H4O)(1.5) (7, C51H66EuF9N8O(15.5)S3, triclinic, P1, Z = 2) provide crucial structural information on the binding mode of the unsymmetrical tridentate ligands.  相似文献   

4.
A series of homoleptic complexes with non-innocent ligands derived from N,N'-bis(pentafluorophenyl)-o-phenylenediamine (H(2)(F)pda) are reported. [Ni(II)((F)sbqdi)(2)] (1), [Pd(II)((F)sbqdi)(2)] (2), [Co(II)((F)sbqdi)(2)] (3), and [Cu(II)((F)sbqdi)(2)] (4) were synthesized, where ((F)sbqdi)(1-) represents a radical anion formed by one-electron oxidation of the doubly deprotonated H2(F)pda. The oxidation states of ligands and metals in complexes 1-4 were assigned by single crystal X-ray crystallography performed at low temperatures. Complex 4 is the first Cu(II) complex where both o-phenylenediamine derived ligands are monoanionic radicals. The bulky N-C6F5 substituents force the complexes 1, 3, and 4 to adopt a twisted geometry (intermediate between square-planar and tetrahedral). The electronic structures of the neutral compounds 1-4 and of some of their cationic and/or anionic neighboring redox states were probed using EPR and UV-VIS-NIR spectroelectrochemistry. The twisted geometry of the complexes results in considerable changes in their electronic structures compared to the well known square-planar complexes while the strongly electron withdrawing N-C6F5 groups have a great influence on redox properties.  相似文献   

5.
Trinuclear lanthanide complexes of the formula [Ln(3)(PPDA)(NO(3))(6)(H(2)O)(2)].NO(3).2H(2)O where Ln=La(III), Pr(III), Sm(III), Nd(III), Eu(III) Gd(III) Tb(III), Dy(III) and Y(III); H(2)PPDA=N,N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility measurements and spectral (IR, NMR, UV-vis, fluorescence, FAB and EPR) and thermal studies.  相似文献   

6.
Yuan M  Zhao F  Zhang W  Wang ZM  Gao S 《Inorganic chemistry》2007,46(26):11235-11242
By changing ancillary tetradentate Schiff base ligands (L), two new one-dimensional azide-bridged manganese(III) coordination complexes [MnIII(L)(mu1,3-N3)]n [L = 5-Fsalen (1), 5-OCH3 (2); salen = N,N'-bis(salicylidene)-1,2-diaminoethane] as well as a mononuclear complex [MnIII(salophen)(N3)] (3) [salophen = N,N'-bis(salicylidene)-o-phenylenediamine] have been successfully obtained. All of them have been structurally and magnetically characterized. In the structures of 1-3 each MnIII ion is in a distorted octahedral geometry with an obvious Jahn-Teller effect, where the tetradentate L ligands all bind in the equatorial mode, whereas in the axial direction, the N3- ion acts as an end-to-end bridge in 1 and 2 while a terminal group in 3 with a methanol molecule at the other end. Magnetic characterization shows that the mu1,3-bridging azide ion proves to mainly transmit antiferromagnetic interaction between MnIII ions, but these three complexes exhibit various magnetic behaviors at low temperatures. Noteworthily, complex 2 behaves as a weak ferromagnet with a relatively large coercive field of 2.3 kOe, much larger than the value reported previously.  相似文献   

7.
Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg(C[triple chemical bond]CPh)2, respectively. The monomeric, six-coordinate, cisoid [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] complexes have trigonal prismatic geometries and rare (for Ln) terminal C[triple chemical bond]CPh groups with contrasting Ln--C[triple chemical bond]C angles (Ln=Nd, 170.9(4) degrees; Ln=Sm, 142.9(7) degrees). Their formation lends support to the view that [Ln(DippForm)2F(thf)] complexes arise from oxidative formation and C--F activation of [Ln(DippForm)2(C6F5)] intermediates.  相似文献   

8.
Four new iron(III) complexes of the bis(phenolate) ligands N,N-dimethyl-N',N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine [H2(L1)], N,N-dimethyl-N',N'-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine [H2(L2)], N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine [H2(L3)], and N,N'-dimethyl-N,N'-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine [H2(L4)] have been isolated and studied as structural and functional models for the intradiol-cleaving catechol 1,2-dioxygenases (CTD). The complexes [Fe(L1)Cl] (1), [Fe(L2)(H2O)Cl] (2), [Fe(L3)Cl] (3), and [Fe(L4)(H2O)Cl] (4) have been characterized using absorption spectral and electrochemical techniques. The single-crystal X-ray structures of the ligand H2(L1) and the complexes 1 and 2 have been successfully determined. The tripodal ligand H2(L1) containing a N2O2 donor set represents the metal-binding region of the iron proteins. Complex 1 contains an FeN2O2Cl chromophore with a novel trigonal bipyramidal coordination geometry. While two phenolate oxygens and an amine nitrogen constitute the trigonal plane, the other amine nitrogen and chloride ion are located in the axial positions. In contrast, 2 exhibits a rhombically distorted octahedral coordination geometry for the FeN2O3Cl chromophore. Two phenolate oxygen atoms, an amine nitrogen atom, and a water molecule are located on the corners of a square plane with the axial positions being occupied by the other nitrogen atom and chloride ion. The interaction of the complexes with a few monodentate bases and phenolates and differently substituted catechols have been investigated using absorption spectral and electrochemical methods. The effect of substituents on the phenolate rings on the electronic spectral features and FeIII/FeII redox potentials of the complexes are discussed. The interaction of the complexes with catecholate anions reveals changes in the phenolate to iron(III) charge-transfer band and also the appearance of a low-energy catecholate to iron(III) charge-transfer band similar to catechol dioxygenase-substrate complexes. The redox behavior of the 1:1 adducts of the complexes with 3,5-di-tert-butylcatechol (H2DBC) has been also studied. The reactivities of the present complexes with H2DBC have been studied and illustrated. Interestingly, only 2 and 4 catalyze the intradiol-cleavage of H2DBC, the rate of oxygenation being much faster for 4. Also 2, but not 4, yields an extradiol cleavage product. The reactivity of the complexes could be illustrated not on the basis of the Lewis acidity of the complexes alone but by assuming that the product release is the rate-determining phase of the catalytic reaction.  相似文献   

9.
Factors that influence aggregation of lanthanide(III) (Ln(III)) ions to form polynuclear complexes were studied utilizing 1-aziridineethanol as a versatile source of macrocyclic and acyclic chelates. The facile ring-opening cyclo-oligomerization of 1-aziridineethanol leads to the formation of a series of polyaza cyclic oligomers (series A). In the presence of ethylenediamine, a competing N-alkylation reaction occurs to produce a new class of acyclic ligands (series B). The cyclo-oligomerization of four 1-aziridineethanol units is the most favorable process, leading to the formation of the 12-membered cyclen-type macrocycle, H(4)L(1) (1,4,7,10-tetrakis(2-hydroxyethyl)-1,4,7,10-tetraaza-cyclododecane). Ring-opening cyclo-oligomerization of 1-aziridineethanol in the presence of Ln(III) ions produces self-assembled mononuclear, tetranuclear, and pentanuclear compounds of H(4)L(1). In the presence of ethylenediamine, oligomerization of 1-aziridineethanol results in a dinuclear complex of an acyclic poly(amino-alkoxide) H(2)L(2). The coordinative unsaturation of (i) the alkoxy sites of [H(x)L(1)](x)(-)(4) (where x < 4) and (ii) Ln(III) ions in coordination numbers less than nine are critical factors in the formation of the polynuclear Ln(III) complexes. The identities of mononuclear, dinuclear, tetranuclear, and pentanuclear complexes herein discussed were established by X-ray crystallography.  相似文献   

10.
Shiga T  Ohba M  Okawa H 《Inorganic chemistry》2004,43(14):4435-4446
A series of trinuclear Cu(II)Ln(III)Cu(II) complexes with the bridging ligand 2,6-di(acetoacetyl)pyridine have been prepared by one-pot reaction with Cu(NO(3))(2).3H(2)O and Ln(NO(3))(3).nH(2)O in methanol. X-ray crystallographic studies for all the complexes indicate that two L(2)(-) ligands selectively sandwich two Cu(II) ions with the 1,3-diketonate entities and one Ln(III) ion with the 2,6-acetylpyridine entity to form a trinuclear CuLnCu core bridged by the enolate oxygen atoms. Cryomagnetic properties of the complexes are studied with respect to the electronic structure of the Ln ion.  相似文献   

11.
Reaction of N,N'-bis(4-carboxysalicylidene)ethylenediamine (H(4)L) with iron(III) chloride and lanthanide nitrates resulted in the coordination polymers of composition {[Ln(2)(FeLCl)(2)(NO(3))(2)(DMF)(5)]·(DMF)(4)}(n) (Ln = Y, Eu, Gd, Tb, Dy). The polymers consist of iron-salen-based moieties having carboxylate linkers connected to rare earth atoms in a 1D chain structure. Thus, the iron-salen complex acts as a "metalloligand". Because of the twisting of the chains, porous structures are formed and possess large free void space. The magnetic studies of selected compounds exhibit weak intramolecular antiferromagnetic interactions of Ln-Ln. At 3, 30, and 80 K, the M?ssbauer spectra of the iron-dysprosium compound show a strongly asymmetric quadrupole doublet with isomer shift and quadrupole splitting values typical for Fe(III) ions in high spin state. In addition, an anomalous temperature dependence of both isomer shift and quadrupole splitting has been observed.  相似文献   

12.
The syntheses, structures, and magnetic properties are reported for four new lanthanide clusters [Sm(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4H(2)O (1), [Gd(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4CH(3)CN (2), and [Ln(4)(μ(3)-OH)(2)L(2)(acac)(6)]·2H(2)L·2CH(3)CN (3, Ln = Tb; 4, Ln = Dy) supported by salen-type (H(2)L = N,N'-bis(salicylidene)-1,2-cyclohexanediamine) and β-diketonate (acac = acetylacetonate) ligands. The four clusters were confirmed to be essentially isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. Their crystal structures reveal that the salen-type ligand provides a suitable tetradentate coordination pocket (N(2)O(2)) to encapsulate lanthanide(III) ions. Moreover, the planar Ln(4) core is bridged by two μ(3)-hydroxide, four phenoxide, and two ketonate oxygen atoms. Magnetic properties of all four compounds have been investigated using dc and ac susceptibility measurements. For 4, the static and dynamic data indicate that the Dy(4) complex exhibits slow relaxation of the magnetization below 5 K associated with single-molecule magnet behavior.  相似文献   

13.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

14.
A series of 3d-4f heterobimetallic phenylene-bridged Schiff base complexes of the general formula [Zn(mu-L1)Ln(NO3)3(S)n] [Ln = La (1), Nd (2), Gd (3), Er (4), Yb (5); S = H(2)O, EtOH; n = 1, 2; H2L1 = N,N'-bis(3-methoxysalicylidene)phenylene-1,2-diamine] and [Zn(mu-L2)Ln(NO3)3(H2O)n] [Ln = La (6), Nd (7), Gd (8), Er (9), Yb (10); n = 1, 2; H(2)L(2) = N,N'-bis(3-methoxy-5-p-tolylsalicylidene)phenylene-1,2-diamine] were synthesized and characterized. Complexes 1, 2, 4, and 7 were structurally characterized by X-ray crystallography. At room temperature in CH(3)CN, both neodymium(III) (2 and 7) and ytterbium(III) (5 and 10) complexes also exhibited, in addition to the ligand-centered emission in the UV-vis region, their lanthanide(III) ion emission in the near-infrared (NIR) region. The photophysical properties of the zinc(II) phenylene-bridged complexes (ZnL1 and ZnL2) were measured and compared with those of the corresponding zinc(II) ethylene-bridged complexes (ZnL3 and ZnL4). Our results revealed that, at 77 K, both ligand-centered triplet (3LC) and singlet (1LC) states existed for the ethylene-bridged complexes (ZnL3 and ZnL4), whereas only the (1)LC state was detected for the phenylene-bridged complexes (ZnL1 and ZnL2). NIR sensitization studies of [Zn(mu-L')Nd(NO3)3(H2O)n] (L' = L1-L4) complexes further showed that Nd3+ sensitization took place via the 3LC and 1LC states when the spacer between the imine groups of the Schiff base ligand was an ethylene and a phenylene unit, respectively. Ab initio calculations show that the observed differences can be attributed to the difference in the molecular vibrational properties and electron densities of the electronic states between the ethylene- and phenylene-bridged complexes.  相似文献   

15.
Wu Y  Wang S  Zhu X  Yang G  Wei Y  Zhang L  Song HB 《Inorganic chemistry》2008,47(12):5503-5511
A series of four coordinate rare earth metal amides with general formula ((CH2SiMe2)[(2,6- IPr2C6H3)N]2)LnN(SiMe3)2(THF) [(Ln = Yb(2), Y (3), Dy (4), Sm (5), Nd (6)] containing a diamido ligand (CH2SiMe2)[(2,6-iPr2C6H3)N]2(2-) with a CH2SiMe2 link were synthesized in good yields via reaction of [(Me3Si)2N]3Ln(III)(mu-Cl)Li(THF)3 with the corresponding diamine (CH2SiMe2)[(2,6-iPr2C6H3)NH]2 (1). All compounds were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 2, 3, 4, 5, and 6 were determined by single-crystal X-ray analyses. Investigation of the catalytic properties of the complexes indicated that all complexes exhibited a high catalytic activity on the cyclotrimerization of aromatic isocyanates, which represents the first example of cyclopentadienyl-free rare earth metal complexes exhibiting a high catalytic activity and a high selectivity on cyclotrimerization of aromatic isocyanates. The temperatures, solvents, catalyst loading, and the rare earth metal effects on the catalytic activities of the complexes were examined.  相似文献   

16.
The coordination chemistries of the potential tetradentate ligands N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethylenediamine, H4[L1], the unsaturated analogue glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil), H2[L2], and N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2-dimethylpropylenediamine, H4[L3], have been investigated with nickel(II), palladium(II), and copper(II). The complexes prepared and characterized are [Ni(II)(H3L1)2] (1), [Ni(II)(HL2)2].5/8CH2Cl2 (2), [Ni(II)(L3**)] (3), [Pd(II)(L3**)][Pd(II)(H2L3) (4), and [Cu(II)(H2O)(L4)] (5), where (L4)2- is the oxidized diimine form of (L3)4- and (L3**)2- is the bis(o-iminosemiquinonate) diradical form of (L3)4-. The structures of compounds 1-5 have been determined by single crystal X-ray crystallography. In complexes 1 and 2, the ligands (H3L1)- and (HL2)- are tridentate and the nickel ions are in an octahedral ligand environment. The oxidation level of the ligands is that of an aromatic o-aminophenol. 1 and 2 are paramagnetic (mu(eff) approximately 3.2 mu(B) at 300 K), indicating an S = 1 ground state. The diamagnetic, square planar, four-coordinate complexes 3 and [Pd(II)(L3**)] in 4 each contain two antiferromagnetically coupled o-iminobenzosemiquinonate(1-) pi radicals. Diamagnetic [Pd(II)(H2L3)] in 4 forms an eclipsed dimer via four N-H.O hydrogen bonding contacts which yields a nonbonding Pd.Pd contact of 3.0846(4) A. Complex 5 contains a five-coordinate Cu(II) ion and two o-aminophenolate(1-) halves in (L4)2-. The electrochemistries of complexes 3 and 4a ([Pd(II)(L3**)] of 4) have been investigated, and the EPR spectra of the monocations and -anions are reported.  相似文献   

17.
Four semirigid ditopic ligands, N,N'-bis(3-pyridylmethyl)-pyromellitic diimide (L(1)), N,N'-bis(4-pyridylmethyl)-pyromellitic diimide (L(2)), N,N'-bis(3-pyridylmethyl)-naphthalene diimide (L(3)), and N,N'-bis(4-pyridylmethyl)-naphthalene diimide (L(4)), reacted with Cd(NO(3))(2) to result in four cadmium(II) complexes, namely, {[Cd(2)(L(1))(2)(NO(3))(4)(CH(3)OH)(4)]·H(2)O} (1), [Cd(L(2))(NO(3))(2)(CH(3)OH)(2)·Cd(2)(L(2))(3)(NO(3))(4)]·{4(HCCl(3))·2H(2)O}(n) (2), {[Cd(L(3))(2)(NO(3))(2)]}(n) (3), and {[Cd(L(4))(2)(NO(3))(2)]·2(CHCl(3))}(n) (4). These complexes have been characterized by elemental analyses, powder X-ray diffraction, thermogravimetric (TG) analyses, IR spectroscopy, and single-crystal X-ray diffraction. Structural analyses show that four types of structures are formed: (1) a discrete M(2)L(2) ring with two Cd ions and two cis-L(1) ligands comprising a zero-dimensional molecular rectangle (0D), (2) an unusual zigzag linear chain and a one-dimensional ladder existing simultaneously in the crystal lattice (1D), (3) a two-dimensional network of the (4,4) net structure (2D), and (4) an unusual chiral three-dimensional framework with 5-fold interpenetrating diamond (dia) topology (3D). In these complexes, the ligands exhibit different coordination modes and construct various architectures by bridging Cd(NO(3))(2) inorganic building blocks. These results suggest that structural diversity of the complexes is tunable by ligand modifications, that is, varying the ligand spacer bulkiness or substituent position of terminal group. Furthermore, gas adsorption measurements indicate that 4 possesses moderate CO(2) uptake and some adsorption selectivity for CO(2) over N(2).  相似文献   

18.
Six new dinuclear or trinuclear FeIII complexes involving tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine (salenH2) or bis(salicylidene)-o-phenylenediamine (salophH2) with 2,5-pyridinedicarboxylic acid, acetylenedicarboxylic acid or 1,3,5-benzenetricarboxylic acid have been synthesized and characterized by means of elemental analysis, i.r. spectroscopy, thermal analyses, conductivity measurements and variable-temperature magnetochemical measurements to the temperature of liquid nitrogen. The complexes can be characterized as high-spin distorted octahedral FeIII bridged by carboxylic acids. The dicarboxylic or tricarboxylic acids play a role as bridges for weak antiferromagnetic intramolecular exchange. The antiferromagnetic coupling parameters J vary in the -1.99 to -5.47cm-1 range for the dimers, whilst the values are -2.35 and -1.42cm-1 for the salen and saloph trimers, respectively. One complex, namely [{Fe(saloph)}2(2,5-dicarpy)]middot H2O, obeys the Curie-Weiss law. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The synthesis and structural characterization of the hexafluorophosphate salts of the substituted bis-amido molecular complexes [Co(III)(eta5-C5H4CONHC4H3N2)2]+ (1), [Co(III)(eta5-C5H4CONHCH2C5H4N)2]+ (2), [Co(III)(eta5-C5H4CON(C5H4N)2)2]+ (3), and of the amido-carboxyl complexes [Co(III)(eta5-C5H4CON(C5H4N)2)(eta5-C5H4COOH)]+ (4), and [Co(III)(eta5-C5H4CONHC2N3(C5H4N)2)(eta5-C5H4COOH)]+ (5) are reported. The pyridyl and pyrazine substituted amido ligands on the sandwich cores have been chosen because they allow both coordination to metal centres and participation in hydrogen bonding. The hydrogen bonding interactions established by the family of complexes in the solid state has been investigated. The utilization of complex 5 for the preparation of the complex of complexes[Cd(NO3)2{Co(III)(eta5-C5H4CONHC2N3(C5H4N)(C5H4NH))(eta5-C5H4COOH)}2]6+ (6) is reported as a first example of the potential of the substituted mono-and bis-amides as ligands. The isolation and structural characterization of the carbonyl chloride cation [Co(III)(eta5-C5H4COCl)2]+ (7) as its tetrachloro cobaltate anion salt is also described.  相似文献   

20.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号