首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
采用热重法,以氮气为保护气,分别在5、10、15、20℃/min的升温速率下,测得五倍子醛的热重-微分热重(TG-DTG)曲线,并在10℃/min的升温速率下测得样品的差示扫描量热(DSC)曲线。结合热失重数据和五倍子醛结构对其分解机理进行推断和验证,并运用双外推法对五倍子醛的热解动力学进行分析,求得原始状态和热平衡态下的动力学参数。研究结果表明,五倍子醛晶体在升温过程中先经历了非结合水和结合水的受热挥发阶段,然后在163℃之后发生热分解,分子中醛基断裂失去1分子的CO;随着升温速率的升高,五倍子醛的分解反应向高温区域移动,最大失重速率依次减小;热解活化能Eα为286.21 kJ/mol,指前因子lnA为70.21,热解机理函数g(α)=[-ln(1-α)]2/3,反应级数n=2/3;热解活化能随转化率的增加逐渐减小;经动力学参数推断,在室温(25℃)下,五倍子醛的贮存期为4~5年。  相似文献   

2.
在水-丙酮溶液中制备了zn(Leu)SO4@0.5H2O的配合物.通过热重和红外分析,研究了它的热分解机理,可分为三步完成.第一阶段配合物的脱水过程在60-180℃,形成Zn(Leu)S04,第二阶段,Zn(Leu)SO4进一步分解为Zn(Leu)SO4@9ZnSO4,随后其在728℃完全分解为ZnO.在不同线性升温5.O,10.0,15.0,20.OK@min-1条件下,用两种积分法和三种微分法研究了题目化合物失去配体过程的非等温动力学,相应过程的表观活化能E为133.78KJ@mol-1,指前因子A为1O8.19s-1,配体失去过程为三维扩散机理控制,并建立了反应过程的动力学方程.  相似文献   

3.
采用热重法(TG)、差示扫描量热法(DSC)测定了硝酸舍他康唑(STCZ)在氮气氛和空气氛中的热分解过程,结果表明STCZ的热分解过程是一个三阶段过程。运用量子化学GAMESS软件计算了STCZ分子的键级,测定了STCZ及其在热分解过程中不同阶段残留物的红外光谱,推断了STCZ的热分解机理,起始步骤是硝酸的分解。根据不同升温速率下的热重曲线计算得到STCZ第一阶段热分解反应的动力学参数,在氮气中,表观活化能Ea=222.2 kJ.mol-1,指前因子A=4.467×1024min-1,在空气中,表观活化能Ea=177.2 kJ.mol-1,指前因子A=1.738×1019min-1。推算了不同使用温度下STCZ的预期寿命。  相似文献   

4.
在水-丙酮溶液中制备了Zn(Leu)SO4·0.5H2O的配合物。通过热重和红外分析,研究了它的热分解机理,可分为三步完成。第一阶段配合物的脱水过程在60~180℃,形成Zn(Leu)SO4,第二阶段,Zn(Leu)SO4进一步分解为Zn(Leu)SO4·9ZnSO4,随后其在728℃完全分解为ZnO。在不同线性升温5.0,10.0,15.0,20.0K·min-1条件下,用两种积分法和三种微分法研究了题目化合物失去配体过程的非等温动力学,相应过程的表观活化能E为133.78kJ·mol-1,指前因子A为108.19s-1,配体失去过程为三维扩散机理控制,并建立了反应过程的动力学方程。  相似文献   

5.
草酸锰分解过程的机理函数判别和动力学研究   总被引:6,自引:1,他引:6  
用等温热重和线性升温热重分析法研究了草酸锰热分解过程,提出了判断其机理函数的3步判别法。经实验和理论分析证明,该反应受随机成核和晶核随后生长的过程(A_3a机理)支配,其活化能E=103.95 kJ/mol,频率因子A=4.448×10~8min~(-1).动力学补偿效应为IgA=0.09661E-1.2856  相似文献   

6.
生物质秸秆热重分析及几种动力学模型结果比较   总被引:42,自引:9,他引:42  
利用热重分析在不同升温速率和氮气气氛下对两种生物质(玉米秸秆和稻秆)的热失重行为进行了研究。根据热重实验数据,采用四种利用热分析获取动力学参数的方法(Coats-Redfern法,Doyle法,最大速率法和分布活化能模型(DAEM)),计算生物质秸秆热分解反应活化能E、反应级数n及频率因子A,并进行比较。结果表明,采用不同的处理方法,得出的热分解动力学参数不同。利用Coats-Redfern法,玉米秸秆和稻秆在热解主要阶段(失重约5 w%~80 w%时)可由一段一级反应过程描述,升温速率10 K/min时活化能值分别为68.8 kJ/mol和70.0 kJ/mol。Doyle法和DAEM模型得到的结果较为接近,可以得到生物质热解过程中的活化能随失重率的变化曲线。生物质秸秆热解包含分子键能断裂的一系列复杂、连续反应过程。  相似文献   

7.
聚羟基丁酸-戊酸的非等温热分解反应动力学   总被引:4,自引:0,他引:4  
用非等温TG-DTA技术, 在5.0、10.0、15.0和20.0 K•min-1线性升温条件下, 研究聚羟基丁酸-戊酸(PHBV)的热分解反应动力学. 结果表明, 分解过程分三个阶段:分解初期、分解中期和分解后期. 分解初期的机理函数为Avrami-Erofeev方程(n=1/2), 对应随机成核和随后生长机理, 表观活化能Ea(β→0)为69.44 kJ•mol-1, 指前因子A(β→0)为106.27 s-1;分解中期的机理函数为Avrami-Erofeev方程(n =2/5), 对应随机成核和随后生长机理, 表观活化能Ea(β→0)为117.64 kJ•mol-1, 指前因子A(β→0)为1011.48 s-1;分解后期的机理函数为Mampel Power法则(n=1/3), 对应机理为幂函数法则, 表观活化能Ea(β→0)为116.64 kJ•mol-1, 指前因子A(β→0)为108.68 s-1.  相似文献   

8.
张林进  叶旭初 《应用化学》2009,26(6):697-701
以氯化锶和硼酸氢铵为原料,采用液相沉淀法制备了片状水合硼酸锶(SrB6O10•5H2O)粉体,并用XRD、FT-IR及SEM进行了表征。利用热重分析法对片状纳米硼酸锶粉体的脱水热分解动力学进行了研究,分别采用 Coats- Redfern 方程和 Flynn-Wall-Ozawa(FWO)法对热重分析数据进行了处理和拟合,初步确定了水合硼酸锶的四步脱水过程及相应的热分解反应机理,得到各步反应的表观活化能和指前因子。  相似文献   

9.
基于热重分析、微商热重分析及示差热分析研究了N,N′-二苯胺基己二酰胺β-晶型成核剂在空气气氛中的热分解动力学;通过利用Friedman方程和Flynn-Wall-Ozawa(FWO)方程对其热分解过程进行动力学分析求得了其热分解表观活化能;同时利用Achar-Brindly-Sharp方程和Coats-Redfern方程研究了其热分解机理,用等温热重分析法测得了失重10%时的寿命方程.结果表明,N,N′-二苯胺基己二酰胺β-晶型成核剂的表观活化能为138.66kJ.mol-1,其热分解反应的机理函数符合Mample法则,反应级数n=3/2,动力学方程为G(α)=α3/2,寿命方程为:lnτ=-51.877+2.922 2×104/T.  相似文献   

10.
首次采用差示扫描量热法(Differential scanning calorimetry,DSC)和热重法(Thermogravimetry,TG)在氮气气氛下对白藜芦醇和白藜芦醇苷进行非等温热分析,采用Van't Hoff方程求得其纯度和熔点,并使用积分Coats-Redfern法、微分Achar法以及Malek法3种热分析动力学方法对热重实验数据进行分析,推断两种天然产物快速热分解阶段的最概然机理函数,并求得相应的动力学参数——表观活化能Ea和指前因子A。研究表明,白藜芦醇及其苷的纯度分别为99.76%和98.90%,熔点分别为257.09℃和198.79℃;白藜芦醇的热分解发生在220~468℃之间,失重率为46.69%;白藜芦醇苷在198~369℃之间发生分解,主要是糖苷键断裂引起的分解失重,失重率为37.47%;白藜芦醇的热分解为化学反应控制机制,符合反应级数方程,反应级数n=2;白藜芦醇苷的热分解为三维扩散控制机制,符合Z.-L.-T.方程;根据白藜芦醇及其苷的热分解动力学参数,推断二者在室温(25℃)下的贮存期分别为3年和4~5年,糖苷键的引入使白藜芦醇苷比白藜芦醇有更长久的贮存期。  相似文献   

11.
丙硫异烟胺的热稳定性及其热分解动力学   总被引:5,自引:0,他引:5  
通过热重法研究了抗结核药物丙硫异烟胺的热稳定性, 计算了该药物的动力学参数并建立了热分解动力学方程. 用Kissinger和Ozawa-Flynn-Wall两种方法计算该药物热分解过程的活化能Ea=54.65 kJ·mol-1. 用Malek法推断该药物的动力学机理函数及指前因子A, 其结果分别为f(α)=α0.391(1-α)0.145, lnA=13.12. 此外, 用差热法测定该物质的熔点、摩尔熔化焓和摩尔熔化熵, 分别是414.09 K、23.21 kJ·mol-1和56.06 J·mol-1·K-1.  相似文献   

12.
柚皮苷的热稳定性及其热分析动力学研究   总被引:3,自引:0,他引:3  
王韶旭  林璐  谭志诚  李彦生  李英 《化学学报》2010,68(21):2156-2160
用TG-DTG/DTA方法研究了柚皮苷的热降解过程及热分析动力学. 热重分析结果表明该物质的失重过程分两步进行. 第一步为结晶水脱出, 其温度范围为343~545 K, 第二步为其分子骨架大规模降解, 其温度范围在545~857 K. 差热分析结果表明, 该物质的熔化温度为439.2 K. 使用Friedman和Ozawa-Flynn-Wall两种方法分别计算出该物质降解过程的活化能. 采用多步线性回归方法, 并参考常用的15种热解机理函数, 确定了柚皮苷热解过程最佳动力学模型为Fn-F2-F1.  相似文献   

13.
Thermal conductivity (k) and thermal diffusivity (D) of the 9CB liquid crystal have been simultaneously determined by a photopyroelectric (PPE) technique in the temperature range from 308 K to 332 K where two different phase transitions occur. The measurements have been performed on oriented samples and the k and D anisotropy has been studied. The behaviour of the macroscopic order parameter vs. temperature has been determined and the order of the phase transitions checked. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The thermal behavior, nonisothermal decomposition reaction kinetics and specific heat capacity of nitrate glycerol ether cellulose(NGEC) were determined by thermogravimetric analysis(TGA), differential scanning calorimetry(DSC) and microcalorimetry. The apparent activity energy(Ea), reaction mechanism function, quadratic equation of specific heat capacity(Cp) with temperature were obtained. The kinetic parameters of the decomposition reaction are Ea=170.2 kJ/mol and lg(A/s–1)=16.3. The kinetic equation is f(α)=(4/3)(1–α)[–ln(1–α)]1/4. The specific heat capacity equation is Cp=1.285–6.276×10–3T+1.581×10–5T2(283 KSADT), critical temperature of thermal explosion(Tb) and adiabatic time-to-explosion(tTlad). The results of the thermal safety evaluation of NGEC are: TSADT=459.6 K, Tb=492.8 K, tTlad=0.8 s.  相似文献   

15.
Heating and/or cooling of substances is one of the oldest and basic methods for preparing materials with defined properties. This always leaves a definitive fingerprint of the thermal history. Beside knowing the structure we need to specify such materials by their thermodynamic behaviour, i.e., stability/metastability, phase relations and transitions, particularly establishing corresponding characteristic points. All this can be based on ordinary thermodynamics but its validity must be approved for non-equilibrium conditions of temperature changes where equilibrium and kinetic effects overlap. The slower the phase transition proceeds the greater is the deviation of the system state (kinetic curve) from its equilibrium state (equilibrium background). This makes possible to locate the actual phase boundary between two states investigated, resulting in the so-called kinetic phase diagrams. Most of modern technologies are intentionally based on non-equilibrium phenomena in order to create metastable/nonstable phases of specific properties. In this sense thermal analysis is understand as the method for determining the sample state on the basis of the sample interactions with the surroundings whose intensive parameters are controlled. Temperature is here considered as a basic parameter that connects all thermophysical measurements and thermal treatments. ICTA-TA Award lecture  相似文献   

16.
17.
History of thermoscopy and thermometry is reviewed showing the role of temperature degrees including the forgotten logarithmic scale. The importance of natural laws of energy, motion, least action, and thermal efficiency is discussed. The meaning of idiomatic terms—thermal physics, thermodynamics, thermostatics, thermotics, and thermal analysis—is specified and revealed within two parallel developed branches of thermal science. Itemized 105 references with titles.  相似文献   

18.
DMA is a tool for studying linear viscoelastic behavior of polymers over ranges of temperature and frequency. Viscoelasticity has its origin in the complex molecular behavior of the polymer. A theoretical master curve has been constructed, based predominantly on thermodynamic theories of polymer molecular conformations, and their intermolecular cooperativity.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
丹酚酸B的热稳定性及其热分解动力学研究   总被引:5,自引:0,他引:5  
用TG-DTG 方法研究了丹参的有效成分丹酚酸B 的热降解过程. 热重分析结果表明该物质的失重过程分两步进行. 笫一步为脱去吸附水, 其温度范围为305~373 K, 第二步为丹酚酸B 分子骨架大规模降解, 其温度范围在413~864 K. 用Friedman 和Ozawa-Flynn-Wall 两种方法分别计算出该药物降解过程中的三个阶段的活化能, 采用多步线性回归方法, 并参考常用的15 种热解机理函数, 确定了丹酚酸B 热降解过程最佳动力学模型为Fn-F2-F1.  相似文献   

20.
使用差示扫描量热仪(DSC)和荧光光谱法研究了在pH 7.4时牛血清IgG (bIgG)热变性, 热化学变性和等温化学变性过程(变性剂为尿素和盐酸胍), 首次报道了bIgG在热化学变性和等温化学变性过程中的相关热力学参数. DSC和荧光光谱实验结果表明, bIgG的热变性和热化学变性过程都是较复杂的不可逆过程, 这个过程可被看作一个三态变构过程. DSC实验表明在热化学变性过程中bIgG的变性温度和焓变值会随着环境中的变性剂浓度的升高而降低. 使用荧光光谱法对bIgG在尿素或盐酸胍存在下的等温化学变性过程进行了研究, 结果显示bIgG的化学变性过程也是一个较复杂的非二态过程. 实验数据分析表明, 变性剂尿素和盐酸胍与bIgG之间主要是依靠氢键相互作用的, 而热变性过程中bIgG的凝集是由于bIgG热变性时结构改变后暴露出的疏水结构互相作用造成的. 实验结果还表明单纯的热变性只能导致bIgG的不完全变性, 而即使是在高浓度变性剂存在时的bIgG热化学变性, 尿素和盐酸胍分别导致的bIgG热化学变性的去折叠态也是不同的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号