首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
柑橘叶片水分亏缺是影响柑橘生长发育的重要因素之一,为研究水分胁迫对柑橘含水率的影响,利用高光谱快速无损检测柑橘叶片含水率,并应用伪彩色处理实现含水率可视化。收集100片柑橘叶片,使用烘干法得到鲜叶和烘干叶片一共500个不同梯度含水率的数据样本,将样本按7∶3的比例划分为训练集(350个样本)和测试集(150个样本),使用决定系数(R2)和均方根误差(RMSE)来评估模型预测的好坏。采用卷积神经网络(CNN)对高光谱数据进行预测,CNN模型使用一维卷积核,一共三层卷积池化层,使用RELU激活函数激活,输出层采用linear激活函数回归预测,使用nadam算法对模型进行优化更新,迭代次数为1 000次;将原始光谱数据和SG,MSC和SNV三种预处理后的光谱数据,与全波段、CARS筛选的特征波段、PCA提取的特征波段组合,导入CNN模型,确定最佳模型为原始光谱数据的CARS-CNN,训练集的R2c和RMSEC分别为0.967 9和0.016 3,测试集的R2v和RMSEV分别为0.947 0和0.021 4;原始光谱数据的全波段CNN模型效果其次,训练集的R2c和RMSEC分别为0.934 3和0.024 9,测试集的R2v和RMSEV分别为0.915 9和0.028 6。对比了不同预处理方式和特征波长选择的支持向量机回归模型(SVR)、偏最小二乘法回归模型(PLSR)、随机森林模型(RF)组合的最佳结果,将最佳组合模型(原始光谱数据+CARS+PLSR,SNV+PCA+RF,SNV+PCA+SVR)与原始光谱数据的CARS-CNN对比,结果表明,依然是原始光谱数据的CARS-CNN模型预测效果最佳。相较于其他的模型,CARS-CNN模型经过CARS筛选特征波段和卷积核进一步提取特征后,预测精度远高于SVR,PLSR和RF模型。选择训练好的CARS-CNN模型,将高光谱图片导入到模型中,计算每个像素点的含水率,得到伪彩色图像,能够可视化叶片的含水率分布情况。研究结果为柑橘叶片水分含量提供了更快速、更直观、更全面的评估,为研究柑橘叶片水分胁迫提供了依据,为智能灌溉决策的优化提供了参考。  相似文献   

2.
为了研究可见-近红外(Vis-NIR)高光谱成像对滩羊肉中总酚浓度(TPC)快速检测的可行性,基于光谱信息融合图像纹理特征建立TPC含量的预测模型,实现滩羊肉中TPC含量的可视化表达。将样本集根据3∶1的比例划分成校正集和预测集,采用多元散射校正(MSC)、基线校准(Baseline)、去趋势(De-trending)、卷积平滑(S-G)、标准正态变量变换(SNV)、归一化(Normalize)等校正方法去除原始光谱中不良散射等干扰信息。通过竞争性自适应加权抽样(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩法(iVISSA)和变量组成集群分析-迭代保留信息变量(VCPA-IRIV)提取TPC浓度的代表性特征光谱。采用灰度共生矩阵(GLCM)算法依次提取肉样第1主成分图像中纹理特征。基于特征光谱及图谱融合信息建立滩羊肉中TPC含量的偏最小二乘回归(PLSR)与最小二乘支持向量机(LSSVM)预测模型并进行对比分析。结果表明,(1)利用De-trending+SNV预处理后的光谱数据建立的PLSR预测模型性能较好,其R2C=0.874 9,R2P=0.793 2;(2)采用CARS,BOSS,iVISSA和VCPA-IRIV分别提取出了23,35,57和43个特征波长,占全光谱的18.4%,28%,45.6%和16.8%;(3)采用BOSS法提取的关键性波长建立的LSSVM模型性能较好,其R2C=0.851 3,R2P=0.745 9,RMSEC=0.116 8和RMSEP=0.155 0;(4)与基于特征波长建立的预测模型相比,BOSS-ASM-ENT-CON-LSSVM模型为滩羊肉中TPC浓度的最佳图谱融合预测模型(R2C=0.850 0,R2P=0.770 9,RMSEC=0.116 0,RMSEP=0.144 7);(5)利用BOSS-PLSR简化模型将TPC浓度反演到样本的高光谱图像上,通过色彩直观化形式展现出来,实现TPC含量的可视化表达。  相似文献   

3.
利用高光谱成像技术与二维相关光谱(2D-COS)结合化学计量学检测灵武长枣半纤维素含量。采用定量瘀伤装置获得0,Ⅰ,Ⅱ,Ⅲ,Ⅳ级瘀伤长枣模型,通过高光谱和分光光度计分别获得样品高光谱图像和半纤维素含量。蒙特卡洛异常值检测法剔除异常样本后,分别用随机划分法(RS),Kennard-Stone法(KS)、光谱-理化值共生距离法(SPXY)和3∶1比例法对样本集划分校正预测。采用基线校准(Baseline)、去趋势(De-trending)和标准化(Normalize)对长枣原始光谱预处理后建立偏最小二乘回归模型(PLSR),优选最佳样本集划分及预处理方法。利用2D-COS将光谱信号扩展到第2维,在全光谱范围内寻找与半纤维素含量相关的敏感波段区间。采用竞争性自适应加权算法(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩方法(iVISSA)、变量组合集群分析法(VCPA)以及iVISSA+BOSS,iVISSA+CARS和iVISSA+VCPA方法在2D-COS敏感波段区间进行特征波长提取,并建立基于特征波长的PLSR模型。结果表明,样本集经3∶1划分和Baseline预处理后建立的基于全波段的PLSR模型最优,故最佳样本集划分方法为3∶1,预处理方法为Baseline,用于后续特征波长提取。通过2D-COS分析发现3个与半纤维素相关的自相关峰(401,641和752 nm);在2D-COS敏感区域(401~752 nm范围内),采用BOSS,CARS,iVISSA,VCPA,iVISS+BOSS,iVISS+CARS,iVISS+VCPA分别提取了14,26,39,12,15,22和11个对应的特征波长,占总波长的18.9%,35.1%,52.7%,16.2%,20.2%,29.7%和14.8%。对比2D-COS和特征波建立的PLSR模型,2D-COS+iVISSA-PLSR模型效果较好,其R2C=0.747 9,R2P=0.604 7,RMSEC=0.043 8,RMSEP=0.060 3。研究表明,利用高光谱成像技术结合2D-COS可实现灵武长枣半纤维素含量的快速检测。  相似文献   

4.
去除土壤水分对高光谱估算土壤有机质含量的影响   总被引:2,自引:0,他引:2  
土壤高光谱技术具有方便快捷、无破坏、成本低等优点,已被广泛应用于估算土壤有机质含量(SOMC)。然而,野外测量的土壤高光谱数据因受外部环境因素(土壤湿度、温度、表面粗糙度等)干扰,导致SOMC估算模型适用性有待提升。土壤含水率(SMC)是影响野外测量高光谱的最主要的障碍因素之一,它的变化严重影响可见-近红外(Vis-NIR)光谱反射率的观测结果。因此,消除SMC对高光谱数据的干扰是提高土壤高光谱估算SOMC模型预测精度的关键环节。以江汉平原潜江市潮土样本为研究对象,在室内人工加湿土样,分别获取6个SMC水平的土壤高光谱数据,采用标准正态变换(SNV)对光谱数据进行预处理,基于外部参数正交化法(EPO)去除土壤水分对高光谱的影响,利用偏最小二乘方法(PLSR)建立并对比EPO处理前、后不同SMC水平SOMC反演模型。结果表明,土壤水分对Vis-NIR光谱反射率有显著的影响,掩盖了SOMC的光谱吸收特征;EPO处理前不同SMC水平的光谱曲线之间的差异较为明显,而EPO处理后的各SMC水平的光谱曲线形态基本相似;采用EPO处理后的土壤高光谱数据建立SOMC估算模型,预测集的R2p,RPD分别为0.84和2.50,其精度与EPO处理前所建模型相比有较大提升,表明EPO算法可以有效去除土壤水分的影响,从而提升SOMC的估算精度。对定向去除外部环境参数对土壤高光谱影响进行了实证,为完善野外原位获取SOMC信息技术提供理论基础。  相似文献   

5.
近红外光谱的北方寒地土壤含水率预测模型研究   总被引:1,自引:0,他引:1  
我国北方寒地温差大,土壤温差对近红外光谱测量土壤墒情有较大影响。针对这一问题,以北方寒地土壤为研究对象,探究大范围温度胁迫下(-20~40 ℃)土壤的近红外光谱与土壤不同含水率之间的关系预测模型方法。选取黑龙江八一农垦大学农学院试验基地中的黑土,经烘干、过筛等操作处理后配置含水率范围在15%~50%内八种不同湿度的土壤样品,建立北方寒地土壤大范围温度胁迫下土壤的近红外光谱信息与含水率之间的定量预测模型。在全波段光谱数据的基础上,结合五种不同光谱信号预处理方法,采用BP神经网络算法、优化支持向量机算法(SVM)、高斯过程算法(GP)三种智能算法建立北方寒地土壤近红外光谱与含水率的预测模型并验证模型的效果。利用69组数据进行训练建模, BP神经网络相关参数设置为学习速率0.05,最大训练次数设置为5 000,隐层单元数确定为20;SVM采用径向基函数,并利用leave-one-out cross validation确定了最佳惩罚参数为0.87,使模型预测的准确性提高;高斯过程算法内部采用马顿核。模型的定量评估采用决定系数(R2)和均方根误差(RMSE)。结果表明,在建立的全部BP神经网络模型中,效果最佳的为S_G-BP神经网络模型,模型的R2为0.960 9,RMSE为2.379 7;在SVM模型中SNV-SVM模型的效果最好,模型的R2为0.991 1,RMSE为1.081 5;在GP模型中S_G-GP模型的效果最好,模型的R2为0.928,RMSE为3.258 1,综上基于SNV预处理的SVM模型训练效果最优。利用剩余的35组光谱数据作为预测集验证模型性能,经模型对比分析发现基于SVM算法的预测模型效果优于其他两种算法,其中基于S_G的SVM模型效果最优,其预测模型的R2和差RMSE分别为0.992 1和0.736 9。综合建模集与预测集的参数最终确定基于S_G的SVM模型为最佳模型。此模型可以作为大范围温度胁迫条件下(寒地)的土壤含水率有效预测方法,为设计优化适宜寒地便携式近红外土壤含水率快速测量仪提供科学依据。  相似文献   

6.
污染土壤对脐橙叶片镉含量影响的光谱预测   总被引:1,自引:0,他引:1  
近年来可见-近红外光谱技术在农业污染监测中应用越来越广泛,但在果树的重金属污染研究中应用较少。本文以纽荷尔脐橙(Citrus sinensis[L.]Osbeck cv. Newhall)为研究对象,采用盆栽方法,通过添加镉(Cd)形成不同污染程度的土壤,然后定期监测叶片中Cd含量及其光谱,分别建立了基于光谱指数的线性回归预测模型,以及基于偏最小二乘回归(PLSR)的Cd含量高光谱预测模型。结果表明:Cd更容易向新叶迁移和聚集,在高Cd污染的土壤中这种现象更加明显;新叶光谱在700~730 nm之间反射率升高,发生红边蓝移现象,老叶光谱没有显著变化;基于光谱指数建立的线性回归模型的R2达到0.8左右,而利用PLSR方法建立的预测模型精度普遍高于线性回归模型,其R2达到0.9左右,并且标准归一化(SNV)的光谱预处理方法可以显著提高PLSR模型的预测精度。研究显示,可见-近红外光谱技术在脐橙重金属污染监测上有很好的潜力。  相似文献   

7.
为了实现兰州百合关键营养物质蛋白质和多糖的快速无损检测,在12 000~4 000 cm-1光谱范围内采集了59份兰州百合粉的近红外光谱(NIRS)。首先运用SG、Normalize、SNV、MSC、Detrend、OSC、SG+1D、SG+Normalize、SG+SNV和SG+Detrend十种预处理方法对原始光谱数据进行处理,确定蛋白质的最佳预处理方法为SG+Detrend、多糖的最佳预处理方法为Detrend;然后运用CARS、SPA和PCA三种算法对预处理的光谱数据进行特征波长筛选,确定蛋白质和多糖的最佳特征波长提取方法均为SPA算法;最后采用PLSR法建立了兰州百合关键营养物质蛋白质和多糖含量的预测模型,结果显示,经过SG+Detrend_SPA处理所建立的蛋白质PLSR模型中,预测集相关系数Rp为0.810 6,预测集均方根误差RMSEP为1.195 3;经过Detrend_SPA处理所建立的多糖PLSR模型中,预测集相关系数Rp为0.810 9,预测集均方根误差RMSEP为2.0946。考虑到经典PLSR无损预测模型精度的限制,在该研究中提出SOM-RBF神经网络无损预测模型。首先利用SOM网络对数据样本进行聚类,然后将得到的聚类类别数和聚类中心作为RBF网络的隐层节点个数和隐层节点数据中心,以此来优化RBF的结构参数。在建立的蛋白质SOM-RBF神经网络模型中,预测集相关系数Rp为0.866 6,预测集均方根误差RMSEP为1.038 5;建立的多糖SOM-RBF神经网络模型中,预测集相关系数Rp为0.868 1,预测集均方根误差RMSEP为1.799 4。比较PLSR和SOM-RBF两种模型对两种物质的预测结果,确定了SOM-RBF神经网络模型为最优建模方法,最终确定在蛋白质检测中,最优模型为基于SG+Detrend_SPA_SOM-RBF建立的模型,模型的预测集相关系数较PLSR高5.6%,预测集均方根误差较PLSR低0.156 8;在多糖检测中,确定的最优模型为基于Detrend_SPA_SOM-RBF建立的模型,模型的预测集相关系数较PLSR高5.72%,预测集均方根误差较PLSR低0.295 2。研究结果表明,运用NIR和SOM-RBF技术可以实现对兰州百合关键营养物质蛋白质和多糖的快速无损检测,为今后快速无损检测兰州百合营养物质提供理论依据。  相似文献   

8.
高光谱小波能量特征估测土壤有机质含量   总被引:3,自引:0,他引:3  
章涛  于雷  易军  聂艳  周勇 《光谱学与光谱分析》2019,39(10):3217-3222
土壤高光谱在采集过程中难以避免噪声干扰,造成高光谱数据信噪比较低,影响土壤有机质含量估测精度。尝试探究小波能量特征方法,降低高光谱噪声,提升土壤有机质含量高光谱估测模型性能。选取湖北省潜江市运粮湖管理区为试验区,于2016年9月采集80份深度为0~20 cm的水稻土样本;土壤样本经风干、碾磨、过筛等一系列处理后,在实验室内采集样本光谱,并通过重铬酸钾-外加热法测定土壤有机质含量;利用浓度梯度法,将总体样本集(80个样本)划分为建模集(54个样本)和验证集(26个样本);以mexh为小波基函数进行连续小波变换(continuous wavelet transformation),将土壤高光谱转换为10个分解尺度的小波系数(wavelet coefficients);逐尺度计算小波系数的均方根作为小波能量特征(energy features),将10个尺度的小波能量特征组成小波能量特征向量(energy features vector);逐尺度逐波长计算小波系数与有机质含量的相关系数,将达到极显著水平(p<0.01)的小波系数作为敏感小波系数(sensitive wavelet coefficients);利用主成分分析法(principal component analysis)分别计算土壤高光谱和小波能量特征向量的各主成分载荷,通过比较两者第一主成分贡献率的高低和两者前三个主成分得分的空间离散程度,判断小波能量特征转换前后建模自变量的主成分信息变化趋势;基于小波能量特征向量和敏感小波系数分别建立多元线性回归和偏最小二乘回归土壤有机质含量估测模型。结果表明,土壤有机质含量越高,全波段反射率越低,但不同土样的光谱反射率曲线特征相似,近红外部分的反射率(780~2 400 nm)高于可见光部分(400~780 nm);敏感小波系数对应的波长为494,508,672,752,1 838和2 302 nm;土壤高光谱与小波能量特征向量的第一主成分贡献率分别为96.28%和99.13%,小波能量特征向量的前三个主成分散点较土壤高光谱的主成分散点在空间上更为聚集,表明小波能量特征方法有效减少了噪声影响;比较全部土壤有机质含量估测模型,以小波能量特征向量为自变量的多元线性回归模型具有最佳估测精度,其验证集决定系数(R2)、相对估测误差(RPD)和均方根误差(RMSE)分别为0.77,1.82和0.82。因此,小波能量特征方法既能够提高数据的信噪比,提升土壤有机质含量的估测精度,又实现了土壤高光谱数据降维,降低了模型复杂度,可用于土壤有机质含量快速测定和土壤肥力动态监测等研究。  相似文献   

9.
掌握土壤在空间和时间上的表征至关重要.土壤可见-近红外(Vis-NIR)光谱可以估算土壤有机碳(SOC)等属性,与传统的实验室理化分析相比,光谱技术能有效实现土壤信息的快速获取.土壤光谱库为建立经验模型提供了大量具有丰富变异性和多样性的样本作数据基础.但受限于库中土壤样本的异质性和模型的适应性,通常区域或局部尺度模型的...  相似文献   

10.
种子活力对于农业发展至关重要,而甜玉米种子普遍存在活力较低且不耐贮藏的问题。因此,及时准确地对甜玉米种子活力进行检测尤为重要。电导率测定法作为一种传统的种子活力检测方法,存在对种子有一定破坏性、耗时较长、重复性不佳等缺点。针这些问题,尝试利用可见-近红外(VIS-NIR)高光谱成像系统结合化学计量学算法建立甜玉米种子电导率快速、无损且精确的检测方法。以高温高湿老化的绿色超人甜玉米种子为试验材料,先通过可见-近红外高光谱成像系统采集种子的高光谱图像和进行电导率测定试验,随后对高光谱图像进行黑白板校正、提取感兴趣区域,获取光谱反射率数据。利用多种预处理方法分别为标准正态变量变换(SNV)、二阶导(SD)、一阶导(FD)、和多元散射校正(MSC)建立甜玉米种子电导率的偏最小二乘回归(PLSR)模型,比较分析并筛选出最适预处理方法。再通过连续投影算法(SPA)及遗传算法(GA)对MSC预处理后的高光谱波段进行筛选提取,基于选出的特征波段建立PLSR模型,并与全波段(Full)PLSR模型进行对比分析,得到与甜玉米种子电导率相关性最高的高光谱波段组合,最终确立一种能够预测甜玉米种子电导率的方法体系。实验结果显示:不同预处理方法(SNV,FD,SD和MSC)建立的PLSR模型性能有所差异,其中MSC-PLSR模型的表现最优秀,其校正决定系数和预测决定系数分别为0.983和0.974,相应的校正均方根误差和预测均方根误差分别为0.165和0.226。进一步分析MSC-Full-PLSR,MSC-SPA-PLSR和MSC-GA-PLSR模型,发现GA能够将全光谱的853个波段压缩至25个有效波段,所建立的MSC-GA-PLSR模型仍表现优秀,其校正决定系数和预测决定系数分别为0.976和0.973,相应的校正均方根误差和预测均方根误差分别为0.194和0.212。实验结果表明:基于可见-近红外(VIS-NIR)高光谱成像系统结合化学计量学算法实现对甜玉米种子电导率的预测存在一定的可行性。该研究为甜玉米种子电导率的快速、无损且精确的检测提供一定的理论支持。  相似文献   

11.
矿区复垦农田土壤重金属含量的高光谱反演分析   总被引:5,自引:0,他引:5  
以矿区复垦农田土壤为研究对象,利用实验室获取的土壤重金属元素砷(As)、锌(Zn)、铜(Cu)、铬(Cr)和铅(Pb)的含量与土壤可见近红外高光谱数据建立重金属元素含量的定量估算模型。为了保证模型预测的精度和稳定性,首先,对原始光谱数据进行平滑处理,并进行光谱变换,即:一阶导数,标准正态变量变换及连续统去除变换;然后,通过相关性分析提取不同变换光谱的特征波段;最后,将最小二乘支持向量机与传统的多元线性回归和偏最小二乘回归方法的结果相比较。研究表明:(1)以不同变换光谱数据建立反演模型均有较好的稳定性并达到一定精度,其中以最小二乘支持向量机方法优于偏最小二乘回归优于多元线性回归模型(除少数几个情况外);(2)从不同光谱变换数据中提取的光谱特征对反演模型结果有一定影响,其中以连续统去除和标准正态变量变换建模结果较好,一阶导数变换稍差。因此,利用高光谱遥感技术来定量估算土壤重金属含量是可行的,而且,必要的光谱预处理对提高估算模型的精度很有帮助。  相似文献   

12.
滨海盐碱区土壤盐分的快速、准确监测对土地合理利用和保护具有重要意义。可见光近红外(Vis-NIR)光谱技术已广泛用于土壤属性的高效估测。然而,水分对含盐土壤光谱的干扰导致传统土壤盐分估测模型的精度降低。旨在探究分段直接标准化(PDS)和正交信号校正(OSC)在含水条件下土壤盐分估测中的应用,从而建立面向滨海盐碱区的“除水”Vis-NIR定量模型。为此,将获取的144份黄河三角洲滨海盐碱区表层(0~20 cm)土壤盐分数据划分为建模集(17个样本)和验证集(127个样本)。通过严格加水控制实验,测量10个含水率梯度(0%,1%,5%,10%,15%,20%,25%,30%,40%和50%)的建模集土壤光谱数据,验证集的土壤光谱则是根据生成的1~50随机整数,通过随机加水实验测量获取。采用PDS和OSC与偏最小二乘回归(PLSR)结合的建模策略,构建土壤盐分估测模型,并进行性能验证和比较。结果表明,OSC比PDS更能有效减轻水分在土壤盐分估测中的建模干扰。具体来说,光谱校正前后生成的所有PLSR模型均取得一定的成功(R2P=0.79~0.91,RMSEP=2.6~3.98 g·kg-1,RPD=1.98~2.37)。OSC-PLSR模型的土壤盐分估测精度提高,R2P,RMSEP和RPD分别为0.91和2.6 g·kg-1和2.37。而PDS-PLSR模型效果不理想,R2P,RMSEP和RPD分别为0.79,3.98 g·kg-1和1.98。模型整体表现出了OSC-PLSR>PLSR>PDS-PLSR的土壤盐分估测性能。此外,提出了变量投影重要性(VIP)和Spearman相关系数(r)结合的分析策略,进一步探究了模型的估测机理。模型的重要波长(VIP>1)与土壤盐分敏感波长(|r|>0.4)吻合,对估测模型有重要意义。比较而言,OSC-PLSR精确提炼了位于830,1 940和2 050 nm附近的模型估测的关键波长,而常规的PLSR和PDS-PLSR包含了大量的冗余信息。综合来看,OSC-PLSR模型在Vis-NIR土壤盐分估测中具有较好的除水效果,为土壤含水状态下的土壤盐分研究提供可靠方法。  相似文献   

13.
反射光谱技术具有快速、便捷等特点,过去几十年中将其应用于土壤科学的研究呈指数增长,且广泛用于土壤属性估算。土壤全氮含量是一项非常重要的肥力指标,光谱估算全氮含量可以为实现精准农业提供重要支持。但反射光谱估算土壤全氮含量是基于全氮与有机碳的相关性还是基于氮本身的吸收特征仍然存在争议。本文以江苏滨海土壤为研究对象,利用偏最小二乘法分别构建全氮和有机碳在相同建模样本量、不同全氮含量及变异程度情况下的估算模型,通过分析模型精度变化规律及全氮与有机碳估算模型系数的相关性,探讨土壤全氮反射光谱估算机理。结果表明,该地区土壤为1 000年来滨海滩涂经人为耕作发育形成,全氮含量不高,有机碳含量偏低。全氮与有机碳之间存在较强的相关性,相关系数高达0.98。土壤全氮含量估算精度随样本集全氮含量的平均值、标准差增大出现先增加后略有减小的变化规律,与变异系数的变化规律相一致。当全氮含量较低时(样本平均值小于0.27 g·kg-1),土壤全氮与有机碳相关系数也较小,实现反射光谱估算全氮是基于氮的吸收特征;当全氮含量较高时(样本平均值大于0.29 g·kg-1),全氮与有机碳相关性较强且有机碳模型精度高于全氮,说明有机碳对光谱曲线的影响随其含量增加而增大,并掩盖了氮的吸收特征,实现反射光谱估算全氮是基于其与有机碳的相关性。该研究揭示了土壤反射光谱估算全氮含量的机理,从而为反射光谱快速估算土壤全氮含量提供理论依据。  相似文献   

14.
土壤是陆地碳循环的中枢,充分发挥土壤固碳潜力有助于减缓全球气候变化。土壤有机碳 (SOC) 的高度分异性同时体现在空间和垂直分布上,但是许多前期研究往往只考虑了空间分异,而忽略了垂直分异。尤其在青藏高原这种高寒山区,土壤样品采集难度较大且费用昂贵。可见近红外 (Vis-NIR) 光谱作为传统土壤实验室化学分析的辅助手段,能够较为快速和精准地估测SOC含量。但是土壤水分等环境因素会掩盖或改变SOC的Vis-NIR光谱吸收特征进而削弱模型预测精度。外部参数正交化 (EPO) 和分段直接标准化 (PDS) 算法可以有效校正水分对光谱的影响,但其在野外新鲜土柱上的表现还不得而知。本研究旨在探索不同水分影响校正算法对野外剖面土壤光谱的校正能力,对采自中国青藏高原海拔2 900~4 500 m色季拉山的共26个1 m深土柱。沿深度以5 cm×5 cm为测量单元,从各单元中心采集共计386个野外原状湿样Vis-NIR光谱,并在实验室内测得相应386个研磨干样的Vis-NIR光谱以及SOC含量。经EPO和PDS算法校正土壤水分对光谱的影响后,通过随机森林建立土壤光谱和SOC含量的定量预测模型,并使用靴襻法评估不同校正处理下预测模型的不确定。土柱整体及垂直分布的精度结果表明,经PDS法转换的农田和草地土柱湿样光谱均表现出良好的水分校正效果,而EPO法仅对农田土柱有效。水分影响校正算法在不同土壤深度上也存在显著差异,EPO和PDS对农田和草地表层样本的水分校正均效果明显。两种校正方法的效果显示出地类和土层深度的依赖性。本研究为利用Vis-NIR光谱技术在高寒山区野外快速准确估算土壤碳含量的垂直分异提供了必要参考。  相似文献   

15.
土壤Cd含量实验室与野外DS光谱联合反演   总被引:3,自引:0,他引:3  
土壤重金属高光谱遥感建模理论上能够大大降低传统化学分析测定所需成本,正逐步发展为有效探查土壤污染空间分布与开展污染土壤综合防治的关键技术。然而土壤重金属高光谱遥感调查技术目前多局限于稳定可控条件下的实验室光谱模型,野外诸多因素(光照、湿度、土壤粗糙度等)影响下野外原位光谱模型的有效性已成为困扰该项技术大范围推广亟待突破的关键科学问题。以湖南衡阳市某矿区为例,分别利用ASD地物光谱仪和等离子发射光谱法测定46个土壤样品350~2 500 nm的实验室光谱和Cd含量,并在土壤取样时同步测量样品野外原位光谱。在运用DS(direct standardization)转换算法处理野外光谱的基础上,融合实验室光谱先验知识,基于主成分逐步回归建模方法开展了土壤Cd含量实验室与野外原位DS光谱联合反演实验,交叉验证了模型的稳定性。同时为深入探究实验室与野外原位DS光谱联合反演模型的有效性,将其与基于实验室光谱、野外原位光谱、野外原位DS光谱、实验室与野外原位光谱联合建立的主成分逐步回归模型开展了对比分析。结果表明:野外原位光谱反演模型精度(R2=0.56)明显低于实验室光谱反演模型(R2=0.64),野外原位DS光谱反演模型与之相比精度有所提升(R2=0.66);在野外原位光谱DS转换校正基础上,联合实验室光谱先验知识的土壤Cd含量反演模型精度最高,R2可达0.72。与此同时,实验室与野外原位DS光谱联合反演模型揭示482,565,979和2 206 nm波段对研究区土壤Cd含量有较好指示性,此结果与实验室光谱反演模型所识别的特征波段一致,两者物理意义相同。研究结果证实了实验室光谱先验知识以及DS转换算法能够提升野外原位光谱模型的可靠性,可为发展土壤Cd含量野外原位高光谱遥感探测提供重要的提供理论与方法支撑。  相似文献   

16.
基于近红外光谱的北方潮土土壤参数实时分析   总被引:30,自引:8,他引:22  
选取中国北方潮土作为研究对象,探索利用近红外光谱分析技术分析土壤参数的可行性和可能性。从一块试验麦田共采集了150个土样,土样在采集回试验室后,在保持其原始状态的条件下利用傅里叶变换近红外光谱仪迅速测定了其近红外光谱。近红外光谱变量为原始吸收光谱和一阶微分光谱,分析的土壤参数有土壤水分、有机质和全氮的含量。对于土壤水分,在相关分析的基础上建立了一元线性模型,所采用的波长为1 920 nm,模型的相关系数达到0.937,模型可以直接用于土壤水分的实时预测。对于有机质和全氮含量建立了多元回归模型,有机质预测模型所采用的波长是1 870和1 378 nm,全氮预测模型所采用的波长则是2 262和1 888 nm。分析结果表明土壤有机质和全氮含量可以利用田间土样的近红外光谱特性进行分析和检测,建立的线性模型是有效的。  相似文献   

17.
土壤组分光谱估算过程中校正样本集的构建会影响模型的预测精度。当前结合反射光谱和Kennard-Stone (KS)算法的校正样本集构建策略忽视了土壤反射光谱是土壤属性的综合反映,构建的样本集通常无法很好地代表目标土壤组分的变异。光谱变换方法可以突出目标组分的光谱特征,为此,本文以湖北省江汉平原滨湖地区水稻土为研究对象,结合包括一阶微分(FD)、Savitzky-Golay(SG)、Haar小波变换、标准正态变量变换(SNV)和多元散射校正(MSC)在内的光谱变换方法和KS算法进行校正样本集建构,通过对比不同样本集构建策略对使用偏最小二乘回归(PLSR)建立的土壤全氮含量光谱估算模型预测精度的影响,研究光谱变换是否有助于提高基于KS算法构建的校正样本集的代表性。结果表明:不同光谱变换会影响校正样本集的构建。反射光谱经过SG或Haar小波变换后,再使用KS算法构建校正样本集与直接基于反射光谱使用KS算法构建的校正样本集相同,建立的估算模型精度不变,相对分析误差(RPD)分别为1.41和1.27。结合FD,SNV或MSC变换和KS算法构建的校正集与基于反射光谱使用KS算法构建的校正集不同,建立的估算模型RPD分别从0.95,1.48和1.42提高到1.13、1.78和2.20。研究表明SNV和MSC等光谱变换方法可以提高基于KS算法构建的校正样本集的代表性,并可有效提高模型预测精度。  相似文献   

18.
快速准确监测农田土壤全氮含量,可显著提高土壤肥力诊断与评价工作的效率。传统测定土壤全氮的方法存在耗时费力、成本高、环境污染等缺点,而基于光谱学原理的土壤全氮定量方法克服了传统测量的劣势。中红外(MIR)光谱相较于可见光-近红外(VNIR)光谱而言,具有更多的波段数和信息量,如何利用中红外光谱监测土壤全氮含量是具有重要应用前景的研究课题。为了探索中红外光谱对土壤全氮监测的可行性,以新疆南疆地区采集的246个农田土样为研究对象,以室内测定的全氮含量和中红外光谱反射率数据为数据源,分析了不同全氮含量土样的中红外光谱特征差异,以主成分分析法(PCA)和连续投影算法(SPA)对光谱数据进行降维,然后采用偏最小二乘回归(PLSR)、支持向量机(SVM)、随机森林(RF)和反向传播神经网络(BPNN)四种建模方法分别构建基于全波段和降维数据的土壤全氮含量定量反演模型。研究结果表明:(1)土壤在中红外波段光谱反射率随全氮含量的增加而增加,在3 620,2 520,1 620和1 420 cm-1附近存在明显的吸收谷;将中红外光谱数据进行最大值归一化处理后,可明显提高土壤光谱反射率与全氮含量的相关性。(2)对比两种数据降维方法,PCA和SPA分别使模型变量数减少了99.8%和97.5%,但以PCA提取的8个主成分为自变量建立的模型预测精度总体要高于SPA对应的模型,因此以PCA提取的主成分建模更适于土壤全氮模型的构建。(3)在建模集中,PLSR和SVM模型以全波段建模精度最高,但建模变量数多,建模效率较低,而RF和BPNN模型分别以PCA和SPA降维后的数据建立的模型在保持精度相当的前提下,可显著提高建模效率;在预测集中,基于PCA降维数据的BPNN模型预测能力最高,R2和RMSE分别为0.78和0.12 g·kg-1,RPD和RPIQ值分别为2.33和3.54,模型具备较好的预测能力。研究结果可为农田土壤全氮含量快速估测提供一定的参考价值。  相似文献   

19.
基于北京市通州、顺义两区52个潮土样品高光谱数据,利用离散小波多尺度分析技术对其进行处理分析。首先将光谱按六种尺度进行分解,然后将各尺度分解数据与土壤有机质含量进行相关性分析,并筛选敏感波段,最后利用偏最小二乘法构建土壤有机质含量估测模型。结果表明:土壤光谱反射率经小波变换后,在参与建模的特征波段中,近红外波段居多,即近红外波段估测有机质含量的贡献高于可见光波段;低频信息对有机质含量的估测能力优于高频信息;高频信息对土壤有机质含量的估测精度随光谱分辨率降低而降低;与常用光谱变换算法相比,小波变换分析法在一定程度上提高了土壤光谱对有机质含量的估测能力,其低频信息与高频信息构建的最优模型预测精度均较高,低频信息的R2=0.722,RMSE=0.221,高频信息的R2=0.670,RMSE=0.255。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号