首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
近红外光谱分析技术在土壤含水率预测方面具有独特的优势,是一种便捷且有效的方法。卷积神经网络作为高性能的深度学习模型,能够从复杂光谱数据中自主提取有效特征结构进行学习,与传统的浅层学习模型相比具有更强的模型表达能力。将卷积神经网络用于近红外光谱预测土壤含水率,并提出了有效的卷积神经网络光谱回归建模方法,简化了光谱数据的预处理要求,且具有更高的光谱预测精度。首先对不同含水率下土壤样品的光谱反射率数据进行简单的预处理,通过主成分分析减少光谱数据量,并将处理后的光谱数据变换为二维光谱信息矩阵,以适应卷积神经网络特殊的学习结构。然后基于卷积神经网络算法,设置双层卷积和池化结构逐层提取光谱数据的内部特征信息,并采用局部连接和权值共享减少网络参数、提高泛化性能。通过试验优化网络结构和各项参数,最终获得针对土壤光谱数据的卷积神经网络土壤含水率预测模型,并与传统的BP,PLSR和LSSVM模型进行对比实验。结果表明在训练样本达到一定数量时,卷积神经网络的预测精度和回归拟合度均高于三种传统模型。在少量训练样本参与建模的情况下,模型预测表现高于BP神经网络,但略低于PLSR和LSSVM模型。随着参与训练样本量的增加,卷积神经网络的预测精度和回归拟合度也随之稳定提升,达到并显著优于传统模型水平。因此,卷积神经网络能够利用近红外光谱数据对土壤含水率做出有效预测,且在较多样本参与建模时取得更好效果。  相似文献   

2.
柑橘叶片水分亏缺是影响柑橘生长发育的重要因素之一,为研究水分胁迫对柑橘含水率的影响,利用高光谱快速无损检测柑橘叶片含水率,并应用伪彩色处理实现含水率可视化。收集100片柑橘叶片,使用烘干法得到鲜叶和烘干叶片一共500个不同梯度含水率的数据样本,将样本按7∶3的比例划分为训练集(350个样本)和测试集(150个样本),使用决定系数(R2)和均方根误差(RMSE)来评估模型预测的好坏。采用卷积神经网络(CNN)对高光谱数据进行预测,CNN模型使用一维卷积核,一共三层卷积池化层,使用RELU激活函数激活,输出层采用linear激活函数回归预测,使用nadam算法对模型进行优化更新,迭代次数为1 000次;将原始光谱数据和SG,MSC和SNV三种预处理后的光谱数据,与全波段、CARS筛选的特征波段、PCA提取的特征波段组合,导入CNN模型,确定最佳模型为原始光谱数据的CARS-CNN,训练集的R2c和RMSEC分别为0.967 9和0.016 3,测试集的R2v和RMSEV分别为0.947 0和0.021 4;原始光谱数据的全波段CNN模型效果其次,训练集的R2c和RMSEC分别为0.934 3和0.024 9,测试集的R2v和RMSEV分别为0.915 9和0.028 6。对比了不同预处理方式和特征波长选择的支持向量机回归模型(SVR)、偏最小二乘法回归模型(PLSR)、随机森林模型(RF)组合的最佳结果,将最佳组合模型(原始光谱数据+CARS+PLSR,SNV+PCA+RF,SNV+PCA+SVR)与原始光谱数据的CARS-CNN对比,结果表明,依然是原始光谱数据的CARS-CNN模型预测效果最佳。相较于其他的模型,CARS-CNN模型经过CARS筛选特征波段和卷积核进一步提取特征后,预测精度远高于SVR,PLSR和RF模型。选择训练好的CARS-CNN模型,将高光谱图片导入到模型中,计算每个像素点的含水率,得到伪彩色图像,能够可视化叶片的含水率分布情况。研究结果为柑橘叶片水分含量提供了更快速、更直观、更全面的评估,为研究柑橘叶片水分胁迫提供了依据,为智能灌溉决策的优化提供了参考。  相似文献   

3.
基于近红外光谱技术的土壤参数BP神经网络预测   总被引:13,自引:1,他引:12  
利用BP神经网络预测方法,建立了基于近红外光谱技术的土壤有机质含量和土壤全氮含量的分析模型。试验共测量了150个田间土壤样本的近红外光谱,首先采用局部加权散点图平滑滤波法对光谱曲线进行了平滑处理,然后根据对目标参数进行的聚类分析结果进一步平均了输入光谱,最后将反射光谱数据进行对数转换后与目标数据一起进行了归一化处理。对预处理后的光谱数据首先进行主成分分析,然后提取贡献率超过99.98%的主成分建立BP神经网络模型。对土壤有机质含量的分析结果:模型拟合精度为0.999,预测精度达到0.854。对于土壤全氮含量的分析结果:模型的拟合精度近似为1,预测精度达到了0.808。研究表明,基于近红外光谱技术的土壤参数BP神经网络预测模型具有较高的鲁棒性和较强的容错能力。  相似文献   

4.
为实现土壤中有机碳(TOC)含量和阳离子交换量(CEC)的快速检测, 对300个土壤样品的可见/近红外光谱数据进行了分析。使用快速独立分量分析(FastICA)算法对光谱数据矩阵进行分解, 得到独立成分和相应的混合系数矩阵, 再利用误差反向传播算法(back-propagation, BP)构造三层神经网络结构。为了克服传统BP神经网络结构难以确定和易于陷入局部极小点的缺点, 采用遗传算法优化BP神经网络结构和初始权值, 得到ICA-GA-BP模型。利用此模型对土壤中TOC含量和CEC进行预测, 根据预测相关系数(R2)和预测标准偏差(RMSEP)来评价预测模型的性能, 表明该模型对TOC含量和CEC测定的相关系数R2均达到0.98以上。说明文章提出的ICA-GA-BP建模方法具有很好的预测效果, 为土壤品质的鉴别提供了一种新方法。  相似文献   

5.
基于无人机多光谱图像的土壤水分检测方法研究   总被引:1,自引:0,他引:1  
以表层土壤为对象,探究土壤的多光谱反射率与土壤水分含量相关性,进行基于无人机多光谱图像的土壤水分含量预测模型方法的探究。选取中国农业大学通州实验站为研究区域,实地采集试验田的土壤样本100组,按照一定梯度配制土壤含水量,配成的土壤含水率为10%~50%之间,土壤含量的真实值采用土壤烘干法进行测定。多光谱相机灵巧便捷,可搭载在无人机上对土壤进行监测。将RedEdged-M型多光谱相机搭载在Phantom 3型无人机上,选择阳光充足的采集环境,实时采集土壤样本的多光谱图像,建立土壤多光谱信息与水分含量之间的模型。利用处理光谱数据的ENVI5.3软件提取土壤样本多光谱信息,以多光谱相机自带的标准白板反射率为100%,计算出土壤样本在蓝、绿、红、红边、近红外五个波段的光谱反射率。采用BP神经网络算法、支持向量机算法、偏最小二乘算法分别建立基于无人机多光谱图像的土壤水分含量的预测模型。以80组土壤样本数据作为训练集,建立基于多光谱图像的土壤水分含量预测模型。采用莱文贝格-马夸特算法对BPNN进行改进,提高了其训练速度,当网络结构为5-10-1时,训练效果最好,本文选择该网络结构;SVM采取高斯核函数,当参数为0.56时,模型效果最好。本研究采用归一化均方根误差(NRMSE)和决策系数(R 2)对三种土壤水分含量的预测模型进行定量对比。以20组土壤样本数据作为测试集,结果可知,基于BP神经网络土壤水分含量预测模型的NRMSE为0.268,R 2为0.872;基于支持向量机的土壤水分含量预测模型的NRMSE为0.298,R 2为0.821;基于偏最小二乘土壤水分含量预测模型的NRMSE为0.316,R 2为0.789。对三种模型分析可知,基于BPNN的土壤水分含量预测模型效果均较好。结果可知,土壤的光谱反射率与含水率间存在较密切的相关性,将多光谱相机搭载在无人机上可以对土壤水分含量进行有效的实时监测,对监测土壤墒情提供技术支持和理论支撑。  相似文献   

6.
利用可见-近红外光谱分析技术可以准确快速的获取土壤养分含量,但不同类型土壤间养分含量校正模型的普适性是亟待解决的关键问题。为提高有机质含量光谱校正模型在多类型土壤之间的普适性和农田在线检测有机质含量速度,利用美国M107B区66个样品建立基于可见-近红外光谱的土壤有机质含量的粒子群-最小二乘支持向量机(PSO-LSSVM)校正模型,预测M107B区的23个验证集样品的决定系数R2=0.859,相对分析误差RPD=2.660;将M107B区89个土壤样品作为校正集建模后对N116B区20个验证集样品的有机质含量预测,预测R2=0.562,预测RPD=0.952,模型的预测R2和预测RPD分别降低34.6%和64.2%,表明M107B区土壤有机质含量的可见-近红外光谱校正模型直接用于N116B区时,预测精度显著降低;将N116B区部分土壤样品加入到M107B区样品集后重新建模,并预测N116B区20个验证集样品的有机质含量,当加入的N116B区土壤样品数量达到35以上,预测R2>0.80,预测RPD>2.0;加入到校正集的N116B区土壤样品数量从0增加到50,模型预测R2从0.562增加到0.811,预测RPD从0.952增加到2.274,精度逐渐提高。结果表明,在M107B区校正模型中加入N116B区部分土壤样品建模,能够有效提高M107B区土壤校正模型对N116B区土壤有机质含量的预测精度;加入的N116B区土壤样品数量达到50以上,模型预测性能趋于稳定,预测精度达到实用要求,成功将M107B区土壤有机质含量校正模型传递给N116B区土壤;优先选择与M107B区土壤样品的有机质含量或光谱曲线差异较大的N116B区土壤样品参与建模,可有效避免模型传递时模型性能出现突变。提出的方法能够有效提高M107B区土壤的有机质校正模型对N116B区土壤的预测精度,为基于可见-近红外光谱的农田土壤有机质含量实时检测提供一种新的经济可行的模型传递方法,为提高多类型土壤的有机质含量检测模型的普适性提供一种有效的解决方案。  相似文献   

7.
葡萄浆果糖度可见/近红外光谱检测的研究   总被引:4,自引:1,他引:3  
针对可见/近红外光谱与水果糖度存在非线性相关的特点,利用漫反射光谱测定方法获取了葡萄浆果的可见/近红外光谱,提出了应用偏最小二乘(PLS)结合人工神经网络(ANN)建立葡萄浆果糖度的预测模型,利用偏最小二乘法(PLS)对原始光谱数据进行处理,得出交叉检验的最佳主因子数为3,并将3个主因子的得分作为三层BP神经网络的输入。通过定标集样本对BP神经网络进行训练,用优化的BP神经网络模型对预测集样本进行预测。PLS-ANN模型对样本的预测模型检验参数r2为0.908,RMSEP为0.112,Bias为0.013,好于只使用PLS模型的预测模型检验参数r2为0.863,RMSEP为0.171, Bias为0.024。结果表明,利用近红外光谱技术无损检测葡萄浆果糖度等内部品质是可行的,为今后进一步分析建立浆果内部品质预测模型奠定了基础。  相似文献   

8.
圣女果可溶性固形物(SSC)含量对圣女果内部品质影响至关重要,但基于高光谱成像及介电性质特征的SSC检测技术存在局限性,且目前鲜见圣女果SSC无损检测模型。为实现圣女果SSC的无损检测,提出基于圣女果可见/近红外光谱特征的SCC预测模型构建,及改进的BP神经网络算法研究,以期解决圣女果内部品质的快速无损检测。以圣女果为研究对象,试验样本188个,将其划分为训练集150个和测试集38个,采用可见/近红外光谱采集系统获取350~1 000 nm范围内的圣女果表面反射强度,经光谱校正得样本反射率,为增强信噪比,截取481.15~800.03 nm范围内的光谱波段作为有效波段进行分析。通过对比三种预处理模型,对有效波段进行SG平滑(Savitzky-Golay Smoothing)预处理,建立BP神经网络预测模型,测试集决定系数(R2)和均方根误差(RMSE)分别为0.578 5和0.563 9;在此基础上,对BP神经网络的网络结构进行改进,寻求BP神经网络最优预测结构,计算输出层与期望值间误差,调整网络结构参数,将隐含层学习率和神经元个数分别设置为0.01和5,建立改进...  相似文献   

9.
SiPLS-CARS与GA-ELM对哈密瓜冠层叶片含水率的反演估测   总被引:1,自引:0,他引:1  
传统的叶片含水率检测方法效率低、操作繁琐且是有损的检测,不利于大田哈密瓜叶片含水率的快速获取。为实现对大田哈密瓜生长期进行更精细的田间灌水管理,利用光谱技术分别获取了哈密瓜植株在成长期(M1)、开花期(M2)、结果期(M3)、成熟期(M4)四个时期内的冠层叶片样本,采用烘干法测得叶片样本的含水率。为提高预测模型的精度和稳定性,首先开展并讨论极限学习机(ELM)模型中的核函数与隐含层神经元个数的选择对ELM模型精度的影响。随后分别利用联合子区间偏最小二乘法(SiPLS)及其与竞争性自适应重加权采样法(CARS)、遗传算法(GA)、连续投影算法(SPA)的组合算法对全波段光谱数据中与叶片含水率相关性高的特征波长进行筛选提取。再分别使用GA与粒子群算法(PSO )对已经确定最佳核函数与隐含层神经元个数的ELM模型中的输入层与隐含层间的连接权值(W)和隐含层神经元阈值(B)进行优化选择,获取最优且稳定的W与B值,进一步提高模型的稳定性和预测精度。最后将四种特征波长提取算法优选出的特征波长分别进行ELM,GA-ELM,PSO-ELM建模分析,以校正集和预测集的相关系数RcRp为模型评价指标,经过对比分析优选出能准确预测哈密瓜冠层叶片含水率的反演估测模型。采用SiPLS及其与CARS,GA和SPA的组合算法提取特征波长,筛选出的变量数分别为273,20,32和6,占全光谱变量的15.6%,1.2%,1.9%和0.03%。进一步将筛选出的特征波长作为自变量,叶片的含水率作为因变量,建立了ELM的预测模型,最佳预测精度Rp值为0.845 0,预测精度不是很理想。故引入GA与PSO对ELM中随机产生的W与B值进行优化选择。最终,经过研究发现,利用GA优化后的ELM模型结合SiPLS-CARS筛选出的特征波长建立的哈密瓜冠层叶片含水率预测精度最优,故反演叶片含水率的最优建模方式为SiPLS-CARS-GA-ELM,Rc值为0.928 9,Rp值为0.903 2,所建模型精度较高,可为大田哈密瓜冠层叶片的含水率进行快速检测,为田间灌溉管理提供科学依据。  相似文献   

10.
烤烟的近红外光谱检测模型   总被引:2,自引:0,他引:2  
对杀青烟叶蛋白质和水溶性总糖含量的光谱检测,发现近红外光谱(1100-2500nm)的检测模型优于可见-近红外光谱(350-2526nm),烟粉检测模型优于片状烟叶的检测模型.通过对烟叶全部光谱数据不同的预处理来探究其蛋白质和水溶性总糖的近红外光谱的检测模型,并利用近红外有效波长对施木克值的含量进行预测.利用偏最小二乘法(PLS)通过训练集的交叉验证建立回归模型,结果表明:(1)对原始光谱进行二阶导数变换后,得到蛋白质含量预测模型的预测集r=0.9768、RMSE=0.6843;(2)对原始光谱每隔51个点进行移动平滑处理及主成分数为8时,水溶性总糖含量预测模型的预测集r=0.9495、RMSE=0.9049;(3)基于82个波长对施木克值的预测模型的预测集r=0.9356、RMSE=0.1060.  相似文献   

11.
森林资源遥感监测是遥感的重要应用方向之一。传统的统测方法花费大量的人力、物力,科学的森林资源预测可以提升工作效率并降低测算成本。森林蓄积量是评价森林生态系统质量的重要指标。蓄积量反演模型是用来估测蓄积量的数学模型,具有学习和预测的功能。同样的地物在不同光照或阴影区域有较大的差别,利用波段比值可以在一定程度上减小光照和阴影区域在建模时得出结果的误差。森林蓄积量的预测模型通常选取光谱信息和纹理特征作为主要建模因子,但未充分考虑选取波段比值、植被指数、地形因子等多特征变量时不同模型对预测精度的影响。针对不同模型的精度问题,以西藏自治区米林县为研究区域,以Landsat OLI影像、DEM数据以及森林资源二类调查数据为数据源,对光谱信息、纹理特征和地形因子等进行提取与分析,并建立了三种基于多特征的森林蓄积量的反演模型,分别是多元逐步回归模型、BP神经网络模型和随机森林模型。旨在研究不同模型对森林蓄积量反演的影响。采用可决系数(R2)、平均绝对误差(MAE)和均方根误差(RMSE)来对模型进行拟合度和精度的评价。结果显示随机森林模型的拟合度和精度均为最优(R2=0.739,MAE=55.352 m3·ha-1,RMSE=63.195 m3·ha-1),高于多元逐步回归模型(R2=0.541,MAE=58.317 m3·ha-1,RMSE=71.562 m3·ha-1)和BP神经网络模型(R2=0.477,MAE=67.503 m3·ha-1,RMSE=73.226 m3·ha-1)。模型预测值的范围为121.3~372.8 m3·ha-1,与实际值较为接近。结果表明基于多特征的森林蓄积量反演在实际应用中是有效的,且不同的模型对森林蓄积量的反演精度有一定的影响。随机森林回归模型的反演精度最高,能够较好地应用于森林资源的遥感监测中。该研究可以为森林蓄积量反演方法的选取提供参考和借鉴,有助于森林资源遥感监测体系的不断完善。  相似文献   

12.
近红外光谱分析技术依赖于表征光谱向量和预测目标之间关系的化学计量学方法。然而,样品的光谱由信号和各种噪声组成,传统化学计量学方法较难直接提取光谱的有效特征,并为复杂的预测任务建立具有较强泛用性的校正模型。进一步地,受限于仪器间的差异,在一台仪器上建立的模型应用于另一台仪器时,难以取得相同的定量分析结果。为此,提出了一种基于卷积神经网络和迁移学习的定量分析建模及模型传递方案,以提高模型在单仪器和跨仪器上的预测性能。在卷积神经网络的基础上,一种结合多尺度特征融合和残差结构,名为MSRCNN的先进模型被设计,并在主仪器上展现了卓越的预测能力。然后,设计了四种的基于fine-tune模型迁移策略,将在主仪器上建立的MSRCNN模型迁移到从仪器。在药品和小麦的公开数据集上的实验结果表明,MSRCNN在主仪器上的RMSE和R2分别为2.587,0.981和0.309,0.977,优于PLS,SVM和CNN。在利用30个从仪器的样本微调主仪器建立的模型后,迁移MSRCNN中的卷积层和全连接层的方案取得了最好效果,其RMSE和R2可分别达到2.289,0.982和0.379,0.965。增加参与模型微调的从仪器样本,可进一步提高性能。  相似文献   

13.
大豆水分含量的高光谱无损检测及可视化研究   总被引:1,自引:0,他引:1  
采用近红外高光谱成像技术对大豆水分含量进行快速无损检测,实现大豆水分含量可视化。采集了96个不同品种大豆样本在900~2 500 nm的高光谱图像,采用直接干燥法测量每个大豆样品的水分含量。利用系统自带的HSI Analyzer软件提取图像感兴趣区域(ROI)的平均光谱信息,代表样品的光谱信息。利用SPXY算法划分样品校正集和预测集,并保留938~2 215 nm波段范围内的光谱数据。采用移动平滑(moving average)、S-G平滑、基线校正(baseline)、归一化(normalize)、标准正态变量变换(standard normal variate,SNV)、多元散射校正(multiple scattering correction,MSC)、去趋势(detrending)共7种光谱预处理方法,发现Normalize方法处理后的PLSR模型效果较好。为了去除光谱冗余信息,简化预测模型,采用连续投影算法(SPA)、竞争性自适应加权算法(CARS)、无信息消除变量法(UVE)提取特征波长,其中SPA,CARS和UVE三种算法优选出14,16和29个波长,分别占总波长的6.5%,7.4%和13.4%。分别对938~2 215 nm波段光谱和特征波长建立预测模型,并将效果较优的模型与Normalize方法结合。建立的14种预测模型效果相比较,发现SPA算法筛选的特征波长建模预测效果较好,并优选出Normalize-SPA-PCR模型,模型的RCP值较高,分别为0.974 6和0.977 8,RMSEP和RMSECV值较低,分别为0.238和0.313,模型的稳定性和预测性较好,可以对大豆水分含量进行准确预测。将Normalize-SPA-PCR模型作为大豆水分含量可视化预测模型,计算高光谱图像每个像素点的水分含量,得到灰度图像,对灰度图像进行伪彩色变换,得到大豆水分含量可视化彩色图像。对预测集的24个大豆品种进行可视化处理,发现不同水分含量大豆的可视化图像颜色不同,水分含量变化对应的颜色变化较为明显。结果表明,高光谱成像技术结合化学计量学可以准确快速无损预测大豆水分含量,实现大豆水分含量可视化,为大豆收获、贮藏加工过程中水分含量检测提供了技术支持。  相似文献   

14.
基于近红外光谱(NIRS)技术和遗传算法-反向传播(GA-BP)神经网络建立模型,分析茶叶掺蔗糖样品的1~2.5 μm原始光谱数据的有效性及冗余度。固定样本数据,对模型的参数优化选择后建立茶叶蔗糖含量定量检测模型。将1~2.5 μm原始数据分1~1.7,1~1.3,1.3~1.7,1.7~2.5和2~2.2 μm。利用建立的模型对同一分辨率下的不同波段进行模型训练。预测结果表明,1~1.7和1~2.5 μm波段存在数据冗余。仅使用1.3~1.7或1.7~2.5 μm波段即可有效建立模型。预测模型对同一波段下的不同分辨率进行研究,从2 nm到20 nm改变分辨率,当波段范围为1~2.5 μm时,模型的R均介于0.9和0.95之间,且RMSEP也在1.7和2.1之间。当波段范围为1~1.7 μm时,模型的R均在0.9和0.93之间,且RMSEP也在1.95和2.25之间。结果表明,1~2.5 μm原始数据中确实存在波长范围和光谱分辨率的冗余。通过光谱特征分析和算法建模,可以显著提高光谱数据获取的有效性;对于茶叶中蔗糖含量的检测,可以采用更窄的波长范围和更低的光谱分辨率。  相似文献   

15.
分析炭疽病侵染后油茶冠层的可见-近红外光谱特征,探索建立病害胁迫下油茶冠层叶片叶绿素含量的预测模型。通过实地调查病情指数,获取不同病害程度的油茶冠层叶片光谱数据及其叶绿素含量,并对光谱数据进行了一阶微分与滑动平均滤波相结合的预处理,再通过光谱数据重采样,提取敏感波段建立了叶绿素含量的BP神经网络预测模型。结果表明:(1)随着病情的加重,油茶冠层光谱可见光区域的反射峰和吸收谷逐渐消失;红光到近红外陡峭的红边被逐渐拉平;在近红外区域,健康油茶的光谱反射率明显大于感病油茶的光谱反射率。(2)微分光谱484~512,533~565,586~606和672~724nm四个波段是叶绿素吸收和反射的敏感波段。(3)以敏感波段为输入变量建立的BP神经网络模型,其计算出的预测值与观测值之间的相关系数r和均方根误差分别为0.992 1和0.045 8。因此,利用可见-近红外光谱技术预测炭疽病侵染后油茶叶片叶绿素含量是可行的。  相似文献   

16.
快速准确监测农田土壤全氮含量,可显著提高土壤肥力诊断与评价工作的效率。传统测定土壤全氮的方法存在耗时费力、成本高、环境污染等缺点,而基于光谱学原理的土壤全氮定量方法克服了传统测量的劣势。中红外(MIR)光谱相较于可见光-近红外(VNIR)光谱而言,具有更多的波段数和信息量,如何利用中红外光谱监测土壤全氮含量是具有重要应用前景的研究课题。为了探索中红外光谱对土壤全氮监测的可行性,以新疆南疆地区采集的246个农田土样为研究对象,以室内测定的全氮含量和中红外光谱反射率数据为数据源,分析了不同全氮含量土样的中红外光谱特征差异,以主成分分析法(PCA)和连续投影算法(SPA)对光谱数据进行降维,然后采用偏最小二乘回归(PLSR)、支持向量机(SVM)、随机森林(RF)和反向传播神经网络(BPNN)四种建模方法分别构建基于全波段和降维数据的土壤全氮含量定量反演模型。研究结果表明:(1)土壤在中红外波段光谱反射率随全氮含量的增加而增加,在3 620,2 520,1 620和1 420 cm-1附近存在明显的吸收谷;将中红外光谱数据进行最大值归一化处理后,可明显提高土壤光谱反射率与全氮含量的相关性。(2)对比两种数据降维方法,PCA和SPA分别使模型变量数减少了99.8%和97.5%,但以PCA提取的8个主成分为自变量建立的模型预测精度总体要高于SPA对应的模型,因此以PCA提取的主成分建模更适于土壤全氮模型的构建。(3)在建模集中,PLSR和SVM模型以全波段建模精度最高,但建模变量数多,建模效率较低,而RF和BPNN模型分别以PCA和SPA降维后的数据建立的模型在保持精度相当的前提下,可显著提高建模效率;在预测集中,基于PCA降维数据的BPNN模型预测能力最高,R2和RMSE分别为0.78和0.12 g·kg-1,RPD和RPIQ值分别为2.33和3.54,模型具备较好的预测能力。研究结果可为农田土壤全氮含量快速估测提供一定的参考价值。  相似文献   

17.
基于光谱的土壤氮含量预测模型泛化能力弱是制约其推广应用的瓶颈。鉴于特征提取及非线性表达能力方面的优势,深度学习模型具有较强的泛化能力。提出一种融合自动编码器和卷积神经网络(Encoder-CNN)的土壤氮含量光谱预测模型,探索模型结构和参数对模型性能的影响。根据以往研究成果和相关性分析,获得180个与氮含量强相关的波长,将其作为Encoder-CNN模型输入,而将土壤氮含量作为模型输出。Encoder-CNN模型利用自动编码器的编码部分进行光谱数据降维,然后输入到卷积神经网络进行土壤氮含量预测。设计2种网络结构,每种网络结构包含2种不同参数设置,共4个模型,用以探索Encoder-CNN土壤氮含量光谱预测模型结构和参数对模型性能的影响。利用公开数据集LUCAS对模型进行训练。按3σ原则对公开数据集LUCAS进行异常值检测与处理,获得20 791个数据,其中18 711个样本作为训练集,2 080个样本作为测试集,对Encoder-CNN模型进行训练。结果表明:对于自动编码器,在相同隐含层数下,最后的隐含层神经元个数为30时,复现效果最优。增加隐含层数,会提升复现效果。增加卷积核数量,特别是尺寸为1×1卷积核,能够提高模型的预测性能与可靠性。增加池化层的网络结构,模型预测精度提升至0.90以上。增加全连接层神经元数量也会提升模型性能。利用自采集的黑龙江黑土实时光谱数据集进行模型迁移,观察模型泛化能力。当模型迭代100次后,在黑龙江数据集上的预测精度即可达到0.90以上;当迭代次数为900时,模型在训练集和测试集上的预测精度可以达到0.98。结果表明,所构建的Encoder-CNN土壤氮含量光谱预测模型具有较好的泛化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号