首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
徐启俊  方江敏  谈震 《低温与超导》2011,39(11):33-37,71
文中运用工程模拟计算软件ASPEN PLUS对LNG船用蒸发气体(BOG)再液化装置工艺流程进行了较全面和深入的模拟计算.通过对模拟计算结果进行分析,得到用丙烯预冷的再液化工艺流程中的主要工艺设备运行参数:海水冷凝器冷凝温度、BOG压缩机出口压力、丙烯压缩机出口压力以及混合制冷剂压缩机出口压力对再液化效率和能耗有着不同...  相似文献   

2.
由于国际上严格限定船舶硫排放新规即将实施,液化天然气(LNG)动力船舶的发展迎来重大机遇。但甲烷本身是一种温室气体,LNG动力船储罐以及系统其他部件产生的闪蒸气(BOG)不应直接向大气中排放。针对上述情况,结合供气系统实例,提出一种处理LNG动力船BOG的方案——利用LNG自身外输冷能结合氮膨胀循环进行BOG再液化,并采用ASPENHYSYS对整个BOG处理流程进行模拟。结果表明,该再液化流程对储罐内压力与LNG组分有很大的响应,储罐压力越大,甲烷含量越少,比功耗相对也越大;同时BOG液化率也随着储罐压力的升高而不断减小,并且甲烷含量越低,液化率下降越快。经过对比,对进入换热器前的BOG进行预冷能有效降低能耗,并且本再液化流程从功耗方面明显优于其他船用氮膨胀再液化循环。  相似文献   

3.
LNG储罐是各类LNG工厂和LNG站必不可少的重要设备,由于LNG温度远低于环境温度,尽管对储罐采取绝热措施,但蒸发仍是不可避免的,LNG蒸发使储罐内压力和温度升高,对储罐产生不利影响。为了减少LNG储罐内低温蒸发气(BOG)直接放空或燃烧造成的污染与浪费,在以往BOG再液化工艺基础上进行优化,设计出适用于LNG站储罐内BOG再液化工艺。该工艺利用LNG站对外供气过程中输出的LNG自身冷能,在压缩机、冷凝器等设备的作用下将LNG储罐内BOG再液化,并以60方LNG储罐为例,用Aspen Plus软件对工艺参数进行优化。研究结果表明:该工艺利用对外供气过程中输出的LNG自身冷能不仅可提高BOG的回收率,使BOG在LNG储罐中循环利用,同时可有效减少LNG冷能浪费;60方LNG储罐,输出LNG流量达到110kg/h即可满足BOG冷凝要求;具有设备少、投资小、能耗低、操作简单的优点,为各类LNG站储罐内BOG再液化处理均有应用价值。  相似文献   

4.
液化天然气(Liquefied natural gas,LNG) 因单位热值二氧化碳排放量低、 能量密度高、 清洁等优点, 成为世界能源市场上增速最快的化石燃料. 利用液化系统对 LNG 储运过程产生的闪蒸气(Boiled off gas,BOG) 进行液化回收, 不仅有显著的经济效益, 同时可以满足环保要求. 基于 LNG 运输过程中 BOG 再液化需求, 本文设计了带冷量回收的新型混合工质再液化系统, 同时建立了4 种常规 BOG 液化系统模型, 利用化工流程模拟软件分析了典型工况下各系统的工作原理及内部能量传递关系, 并对比了不同工况下各系统性能. 结果表明, 在所设进出口条件下: 当 BOG 组分为纯甲烷时, 混合工质液化系统比功耗及所需冷却水量明显低于氮膨胀液化系统, 新型混合工质液化系统比功耗最低为0.53 kWh· kg-1 ;BOG 流量每增加100 kg· h-1 , 氮膨胀液化系统功耗增加约100.05 kW,而带冷量回收的液化系统功耗仅增加63.60 kW. 当 BOG 组分中氮气含量增加时, 液化率降低, 所需的制冷量、 冷却水量均降低; 当氮气含量约为5 % 时存在最小比功耗, 此时氮膨胀系统比功耗最小为0.96 kWh· kg-1 , 带冷量回收的混合工质液化系统比功耗最低为0.51 kWh· kg-1 . 带冷量回收的新型混合工质再液化系统结构紧凑、 能耗更低, 是应用于 LNG 船舶 BOG 再液化工艺的优选方案之一.  相似文献   

5.
天然气液化系统的工作参数主要是借助节流阀来调节的。针对丙烷预冷混合制冷剂循环,借助过程模拟软件HYSYS,计算了液化系统各节点的状态参数。在天然气进口状态不变的情况下,以节流阀后压力为自变量,对预冷循环流程、混合制冷循环流程、天然气液化流程三部分进行了稳态分析。结果表明:预冷节流阀的调节可以控制预冷循环与主冷循环分别承担的负荷,随着预冷节流阀后压力的升高,预冷压缩机功耗降低,主冷压缩机功耗升高;升高主冷循环中节流阀后压力可降低主冷功耗。在主冷制冷循环中,一级节流与二级节流之间温度与阀后压力有关,二级节流后温度存在极值点。当天然气出口节流阀后压力升高时,液化率也会升高。  相似文献   

6.
昌锟  李青  李强 《低温与超导》2007,35(5):387-390
我国每年随焦炉气排放到环境中的氢气是数百亿立方米。文中提出分区液化的低温分离法将焦炉气中的氢分离并同时液化。通过CH4及N2的理想蒸汽制冷循环计算,结果表明CH4的制冷系数是N2制冷系数的2.7倍,而相应卡诺效率是1.6倍。通过Ne、H2、He的理想气体制冷循环计算,结果表明Ne的制冷系数和热力学完善度都最高。从热力学角度而言,可分别采用CH4和Ne作为制冷剂组成制冷循环。  相似文献   

7.
无回热混合制冷剂循环(MRC)液化天然气流程的系统模拟   总被引:2,自引:2,他引:0  
针对混合制冷循环液化天然气流程的热力学研究进行流程的系统模拟。系统介绍了第一个多股换热器前高低压制冷剂之间不进行回热的典型混合制冷循环液化天然气流程的计算方法;指出了进行此类流程计算时应注意的事项:针对特定的参数进行了全流程的模拟,得到了流程各节点压力、温度、焓、熵、汽液两相流量、总流量、汽液两相摩尔分率;同时得到了流程中压缩机耗功、丙烷预冷量、制冷剂流量、各换热器的换热量等表示流程性能的参数  相似文献   

8.
小型天然气液化装置具有结构紧凑、投资少、操作简单等优点。采用化工软件HYSYS对氮气膨胀流程、丙烷预冷氮气膨胀流程和丙烷预冷N2-CH4膨胀流程进行模拟,以比功耗为目标函数,对液化流程的关键参数以及制冷剂组分进行优化,发现由于N2和CH4的比热容Cp、绝热指数k不同,使得N2与CH4之间存在最优配比。结果表明,优化后的丙烷预冷膨胀液化流程比功耗要比传统氮气膨胀液化流程要少22.7%。制冷剂在循环过程中均处于气相,受外部环境影响较小,因此优化后的N2-CH4膨胀流程在我国小型零散天然气市场具有良好的前景。  相似文献   

9.
制冷剂制冷效果与其配比复杂程度相互制约,使制冷剂的合理配比问题成为C3/MRC液化工艺中的难点之一。依据混合制冷剂中不同组分在不同温区制冷的原理,初步选定混合制冷剂的基本组成为N_2、CH_4、C_2H_4、C_3H_8、n-C_4H_(10)和n-C_5H_(12)。通过HYSYS模拟得到制冷效果,分析得出各组分在制冷过程中的作用。在此基础上,设计正交实验并得出模拟结果,采用逐步回归的方法回归多项式,以比功耗作为目标函数进行优化分析,最后得到优化配方。此方法简单高效、准确性好,具有较高的工程应用价值。  相似文献   

10.
混合制冷剂循环液化天然气流程的优化分析   总被引:5,自引:0,他引:5  
在液化天然气流程中,混合制冷剂循环液化天然气流程由于其机组设备少、流程简单、管理方便等优点而备受国内外关注。本文对两种混合制冷剂循环液化天然气流程分别以流程中压缩机耗功最小、压缩机耗功与丙烷预冷量之和最小为目标函数进行优化,得到了最优流程参数及相应的流程性能参数;并对计算结果进行分析。  相似文献   

11.
MFC为适用于大型LNG工厂的三阶液化流程,运行时功耗较高。因此流程任何的性能提升都能够明显降低功耗。使用HYSYS软件对MFC流程进行模拟和分析。对预冷、液化、过冷循环中制冷剂组分进行了敏感性分析,给出MFC流程中每阶循环中各组分对流程性能的影响。将MATLAB优秀的数值计算能力和友好界面等特点与HYSYS强大的物性包相结合,使用遗传算法对MFC液化流程进行全局优化,优化后流程比功耗降低为4.685k Wh/kmol。基于优化结果对流程中的主要设备进行分析,同时给出进一步降低损失的建议。  相似文献   

12.
首先简要介绍了目前LNG储运装置BOG产生的现状,以及目前回收BOG再液化的一些方法。接着分别针对低温制冷机和液氮作为冷源的两种回收再液化方法从设备投资(两者相当)、运营成本(前者比后者低约40%)、投资回收周期(两者相当)等方面进行综合分析比较,最终得出用低温制冷机作为冷源再液化BOG成为LNG是经济的(液化1kg的BOG仅需花费1.35元)。  相似文献   

13.
针对城市天然气高中压管网调压站的压力能回收利用,综合考虑LNG储运过程中广泛面临的BOG(Boiloff gas)问题,提出了一种结合混合工质循环、利用天然气压力能生产高品质LNG的小型液化流程。研究分析了预冷温度、动部件效率、低温换热器性能及液化天然气温度对流程天然气液化比的影响,优化的流程结果参数表明,当所得液化天然气储存在4bar,-160℃时,流入系统18.26%的天然气可被液化,其余部分外输中压管网;提出了在LNG买卖市场中根据LNG品质议价的建议,以从根本上减少LNG储运、装卸及使用过程的BOG排放量,进而减少经济损失与能源浪费。该流程可应用于城市燃气调峰,也可进行二次销售,具有较好实用性和经济性。  相似文献   

14.
针对某一典型含氧煤层气气源,构建了适用于小型液化装置的丙烷预冷氮-甲烷膨胀液化精馏工艺,并采用Aspen Plus对该流程进行建模及分析。以流程比功耗、甲烷回收率为评价指标,分别研究了制冷剂高压压力PN2和低压压力PN7对流程比功耗的影响。结果表明,在PN2为3.8MPa,P_(N7)为0.3MPa时,比功耗为0.513k Wh·Nm^3,甲烷回收率为93.42%,LNG产品纯度接近100%。结合爆炸极限计算表明,含氧煤层气在压缩、冷却、液化及节流过程中,甲烷浓度均高于爆炸上限,操作安全性较高,而精馏塔顶部甲烷浓度变化会穿越爆炸上下限区间,基于此,采用原料气低压初脱氧的方式来控制精馏塔顶部氧气含量。分析结果表明,对当粗脱氧后进入压缩机的煤层气含氧量低于2.4mol%时,流程操作安全可靠。  相似文献   

15.
针对某一典型含氧煤层气气源,构建了适用于小型液化装置的丙烷预冷氮-甲烷膨胀液化精馏工艺,并采用Aspen Plus对该流程进行建模及分析。以流程比功耗、甲烷回收率为评价指标,分别研究了制冷剂高压压力PN2和低压压力PN7对流程比功耗的影响。结果表明,在PN2为3.8MPa,P_(N7)为0.3MPa时,比功耗为0.513k Wh·Nm~3,甲烷回收率为93.42%,LNG产品纯度接近100%。结合爆炸极限计算表明,含氧煤层气在压缩、冷却、液化及节流过程中,甲烷浓度均高于爆炸上限,操作安全性较高,而精馏塔顶部甲烷浓度变化会穿越爆炸上下限区间,基于此,采用原料气低压初脱氧的方式来控制精馏塔顶部氧气含量。分析结果表明,对当粗脱氧后进入压缩机的煤层气含氧量低于2.4mol%时,流程操作安全可靠。  相似文献   

16.
在众多天然气液化工艺流程中,混合制冷剂天然气液化流程因其流程简单、效率高等特点得到广泛应用。混合制冷剂的制冷效率与其组成复杂程度相互约束,使制冷剂的合理配比成为限制MRC液化工艺发展的瓶颈。综合前人研究成果,初步选定其组分,通过正交实验获取实验样本,运用HYSYS流程进行模拟计算;以比功耗值作为目标函数,运用SVM法优化分析,最终得到最优混合制冷剂配比。通过对比验证,优化效果显著。该方法操作简单、高效、准确性好,具有较高的工程应用价值。  相似文献   

17.
在众多天然气液化工艺流程中,混合制冷剂天然气液化流程因其流程简单、效率高等特点得到广泛应用。混合制冷剂的制冷效率与其组成复杂程度相互约束,使制冷剂的合理配比成为限制MRC液化工艺发展的瓶颈。综合前人研究成果,初步选定其组分,通过正交实验获取实验样本,运用HYSYS流程进行模拟计算;以比功耗值作为目标函数,运用SVM法优化分析,最终得到最优混合制冷剂配比。通过对比验证,优化效果显著。该方法操作简单、高效、准确性好,具有较高的工程应用价值。  相似文献   

18.
以汽车空调用涡旋式制冷压缩机为研究对象,为了改善汽车空调涡旋压缩机欠压缩工况,减少排气过程等容压缩功率损失,提高其制冷性能系数,研制了变基圆半径渐开线的涡旋盘,并利用ANSYS有限元软件对涡旋盘在制冷剂气体压力载荷下的应变进行了分析。实验研究结果表明,涡旋齿在中心高压区的变形量极小,从而较好地保证了高压腔内气体的密封性能,减少了制冷剂气体的泄漏,降低了压缩机的重复压缩功耗。  相似文献   

19.
油循环率直接关系到制冷压缩机的性能评定,同时也会对制冷循环中制冷剂的热物理性质、换热器制冷剂侧的传热效果等造成影响,是制冷系统的一项至关重要的评价指标。该文系统总结了制冷系统油循环率的测量方法,并进行了详细的阐述与比对,对最新的光学测量技术也做了介绍。  相似文献   

20.
液化流程的设计是小型天然气液化装置开发研制的关键。文中介绍了国外天然气液化装置研究机构和设计制造公司所提出的几种小型天然气液化流程,阐述和分析了其液化方法和特点,指出国外小型天然气液化流程制冷主要采用了天然气膨胀循环,制冷剂膨胀循环和混合制冷剂循环;其液化装置采取了模块化定制成撬块的思路,并且考虑了环保性。认为膨胀制冷方法在小型天然气液化流程中将得到广泛的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号