首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
物理学   8篇
  2022年   1篇
  2018年   3篇
  2014年   3篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
建立了一种应用于CO_2热泵热水机的内螺旋管式气体冷却器(逆流型)的换热特性稳态仿真模型,且与实验数据吻合较好。在仿真模型基础上,分析气体冷却器内部流体温度沿管长分布情况,研究结构参数和水侧进口温度对气体冷却器换热性能的影响,研究结果表明:由于CO_2侧出口温度不会低于水侧进口温度,因此换热量受水侧进口温度限制,当气体冷却器换热面积增加到一定程度时,换热量增加幅度放缓并逐渐接近其上限值;随着水侧进口温度的增加,水侧与CO_2侧的对数平均温差和换热量降低,水侧出口温度增加幅度越来越小。  相似文献   
2.
从基础油和添加剂两个角度对冷冻机油各种技术指标物理意义进行系统探讨,结合重要的有机化学分析手段,提出了针对不同冷冻机油或同种冷冻机油不同批次间的差异性分析方法;以两种不同牌号的油品进行了差异性评价示例分析,二者性能一致性的结论经由压缩机性能台架试验得以确认。合理有效的制冷系统用润滑油性能差异性评价体系,为制冷剂替代背景下的不同油品的质量评定提供了方法论依据。  相似文献   
3.
油循环率直接关系到制冷压缩机的性能评定,同时也会对制冷循环中制冷剂的热物理性质、换热器制冷剂侧的传热效果等造成影响,是制冷系统的一项至关重要的评价指标。该文系统总结了制冷系统油循环率的测量方法,并进行了详细的阐述与比对,对最新的光学测量技术也做了介绍。  相似文献   
4.
针对常规空气源冷水机组评价系统无法进行低环境温度空气源冷水机组的低环境温度制冷工况测试而设计了低环境温度空气源冷水机组评价系统,详细论述了该评价系统的测试原理、调节设备等关键性问题。在对低环境温度制冷工况测试数据进行分析后可知:低环境温度空气源冷水机组评价系统不仅使常规空气源冷水机组评价系统实现了低环境温度空气源冷水机组的低环境温度制冷工况测试,同时采用冷凝热回收技术有效地降低了评价系统的运行费用和能源消耗,而且整个评价系统工况控制稳定、设备运行可靠。较高的调节精度,有效地保证测试时数据的稳定和准确,完全可以为低环境温度空气源冷水机组的研发提供依据。  相似文献   
5.
文中对制冷剂与冷冻机油的相溶性测定必要性做了阐述。结合我国制冷剂替代现状,参考现行石化行业标准,搭建了一套用于相溶性测定的试验装置,获取了R32与某油品的两相分离曲线,为R32压缩机的油品选型和换热器设计提供了基础数据。基于试验装置研制过程,还对我国相溶性试验方法行业标准提出了修订建议。  相似文献   
6.
建立了滚动转子式压缩机热力学稳态仿真模型,在相同理论容积输气量的条件下,分析了吸气过热度、蒸发温度、冷凝温度对以R22、R32和R290为制冷工质的滚动转子式压缩机热力性能的影响规律。对比研究表明:在相同工况下,R22的性能系数COP最大但与R32接近,R290的COP最小;若压缩机高低压比降低,COP增加明显;当仅增加吸气过热度时,R32、R22的COP变化很小,而R290的COP增加较为明显,并逐渐接近R32和R22;吸气过热度仅对排气温度有较大影响,而对质量流量、功率、制冷量、COP的影响很小,蒸发温度、冷凝温度对热力性能的影响更显著。  相似文献   
7.
对于管翅式换热器,铜管与翅片接触热阻占到换热器总热阻的10%—20%,并且随着翅片热疲劳的加剧,接触热阻不断增大。通过对不同胀接工艺参数的管翅式换热器换热量进行测试,分析得出胀接工艺参数胀头直径对换热器性能的影响。运用数值计算及可视化试验方法,从局部特性分析胀接对管翅接触状态和管内内螺纹形变的影响。结论如下:胀头直径过小会出现欠胀问题,管与翅片胀接程度达不到要求,会影响换热器性能;胀头直径过大会出现过胀现象,接触间隙大大增加且损伤内螺纹齿,同样会降低翅片换热器的换热性能。  相似文献   
8.
贾甲  冯音琦 《应用光学》2009,30(4):610-615
改进和完善宽场光学相干断层成像技术(WFOCT)的主要方法是从光源、系统光路等方面进行改进.研究WFOCT系统的成像状态和环境状态对系统的横向分辨率的影响,借助ZEMAX光学设计软件模拟该系统的干涉效果,在实验中采用八步移相法来解析样品的二维图像信息,将解析出来的样品图像赋值到图像变量中进行存储显示.实验与模拟结果表明:模拟仿真获得的干涉信号含有对比度和平行度很高的干涉条纹,证明了利用ZEMAX软件模拟仿真干涉系统的可行性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号