首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
超细改性碳酸钙浓悬浮体的正负触变性   总被引:8,自引:0,他引:8  
以超细改性碳酸钙、氧化钙、邻苯二甲酸二辛脂组成的浓悬浮体为对象,用触变性和屈服应力来探测悬浮体的内部结构,结合悬浮体的分散稳定性能,讨论了正负触变性的形成、稳定性和可逆转变及触变性结构的强度,并考察了游离脂肪酸对悬浮体正负触变性转化的影响.  相似文献   

2.
铝/镁混合金属氢氧化物正电胶体粒子体系的触变性   总被引:9,自引:1,他引:8  
采用恒定低剪切速率方法和动态实验方法研究了铝/镁混合金属氢氧化物(MMH)悬浮体的流变性,着重考察了剪切历史和恢复时间等因素对悬浮体触变性的影响,发现MMH粒子深度的增加使得悬浮体从粘性流体变为“类固体”;恒定低剪切速率方法和动态实验方法研究悬浮体的结构恢复过程给出了不同的结果,唯象地解释了MMH悬浮体触变性产生的原因,认为触变性结构是由于粒子间的静电排斥作用而形成的,与粘土悬浮体相比,两者的流变性具有诸多相似之处,只是所带电荷符号相反。  相似文献   

3.
研究了带相反电荷的粘土颗粒和MMH(铝、镁混合金属氢氧化物)颗粒形成的混和悬浮体的流变学性能,考察了盐对混合体系流变学性能的影响.结果表明,当粘土质量分数为1%时,悬浮体为牛顿型流体;当质量分数升至2%时,悬浮体表现出固体的弹性响应;特定粘土含量的悬浮体中,随着MMH量的增加,混合体系的屈服值和弹性模量亦增加,表明凝胶结构增强.向混合体系中加入NaCl,弹性模量、屈服值和粘度等流变参数均降低.与单组分粘土悬浮体或MMH悬浮体相比,双组分混合体系的结构恢复很快.  相似文献   

4.
Al-Mg MMH正电胶体粒子体系的流变学   总被引:1,自引:0,他引:1  
研究了铝/镁混合金属氢氧化物(MMH)粒子含量,PH值,电解质等因素对MMH悬浮液流变学的影响,发现MMH粒子浓度的增加使悬浮体从牛顿型流体变为带有屈服值的假塑性流体;在相对很低的粒子浓度(2%)时,通过改变粒子表面化学状态和粒子周围的介质环境可以改变悬浮体的流动形态;MMH悬浮体触变性结构与高PH值时合成锂皂石悬浮体的结构极为相似,是粒子间的静电排斥作用所致。  相似文献   

5.
高分子分散剂在陶瓷浓悬浮体制备中的应用   总被引:1,自引:0,他引:1  
良好分散的陶瓷浓悬浮体是胶态成型实现的前提和关键。本文阐述了高分子分散剂的分散稳定作用及其在多种单相复相陶瓷浓悬浮体制备中的研究和应用,进而从高分子分散剂自身特性,陶瓷分散相和分散介质的物理化学性质以及陶瓷胶态成型工艺操作等方面,分析了各因素对高分子分散剂分散效果的影响,最后指出了能够优化陶瓷浓悬浮体性能的高分子分散剂的研究趋势。  相似文献   

6.
Al-Mg类水滑石-钠质蒙脱土悬浮体的流变性  相似文献   

7.
磁流变体的制备及性能   总被引:1,自引:0,他引:1  
对以羰基铁粉、硅油和烃类油为悬浮相和悬浮介质,通过适当添加剂和工艺制备的磁流变体材料,制备方法、磁流变性能及影响因素进行了研究,认为是具有良好综合性能的磁流变体材料.制备的磁流变体具有较低的零场粘度(0.4~1.5 Pa s),较高的剪切应力(τ=50~75 kPa)和良好的稳定性及阻尼性能.  相似文献   

8.
X-CT用于材料组成分析旷文峰(中国科学院成都有机化学研究所,610041)林大全,吴大诚(四川联合大学仿真体模中心,四川联合大学纺织学院,成都610065)X-CT是用于医学诊断的X-射线计算机断层图像仪,其基本工作原理是用X-射线对检测对象进行连...  相似文献   

9.
用含氮,硫功能团的螯合树脂YPA,进行静态吸附,含待测定元素的浓缩物制成悬浮体,采用悬浮体进样/电热蒸发等离子体原子发射光谱(ETV-ICP-AES)直接测定。方法的检出限分别为0.5,0.7和4.0ng/mL(对Pt,Pd和Os)相对标准偏差分别为2.6%,4.7%和3.8%(n=10,Pt:2.0mg/L,Pd:2mg/L,Os:5.0mg/L)。应用本法对质标样进行了分析,测定值与标准值基本  相似文献   

10.
HPAM和PACS对钠型蒙脱土悬浮体的混合絮凝作用   总被引:2,自引:0,他引:2  
用聚丙烯酸酰胺(PAM)、增聚羟基氯化铝(PACS)和水解聚丙烯酰胺(HPAM)等高聚物作絮凝剂研究其各自对土壤悬浮体的絮凝效果及絮凝机理已有报道,本文研究了HPAM和PACS混合时对钠型蒙脱土悬浮体的絮凝作用,结果表明,混合使用比单独使用时效果显著。  相似文献   

11.
Two types of precipitated silica powders modified by poly (dimethylsiloxane) (PDMS) were suspended in benzyl alcohol and their rheological properties were investigated as a function of silica volume fraction, φ. The suspensions were classified into sol, pre-gel, and gel states based on the increase in φ. An increase in the degree of surface modification by PDMS caused gelation at higher φ. Plots of apparent shear viscosity against shear rate in the sol and pre-gel states of highly modified silica suspensions showed weak shear thickening behavior, while the same plots for silica suspensions with a low modification level exhibited shear thinning behavior. The dynamic moduli of hydrophobic suspensions in the pre-gel and gel states were dependent on the surface modification: the storage modulus G′ was larger than the loss modulus G″ in the linear region and these moduli increased with increasing φ, irrespective of the silica powder. The linear region of the φ range for the precipitated silica suspensions was wider than that for the fumed silica powders modified by PDMS suspended in benzyl alcohol, while the G′ value in the linear region for the precipitated silica suspensions was less than those for the fumed silica suspensions.  相似文献   

12.
One of the main goals in the studies of fiber suspensions is the prediction of fiber orientation in a short fiber composite part, using the processing variables, mold geometry, and material characteristics. The rheological properties of the fiber suspensions are strongly associated with the fiber orientation distribution. The understanding of the relations between the fiber structure in the suspension and its rheological properties is a key step in the design and implementation of processing operations. The fiber motion in shear flow is analyzed in this article. The study is focused on the relation between fiber orientation and rheological properties for a suspension with uniform (delta function) fiber orientation distribution in a Newtonian fluid. The study shows that the rheological properties of the suspension, measured during the start up of steady shear flow, can be used to determine the fiber orientation in the sample. The first normal stress coefficient is the property to measure in order to determine whether or not the suspension has a random fiber orientation. Any of the shear flow transient rheological properties can be used to determine the fiber initial orientation. It was found that the normal stress coefficients can show negative or positive values depending on the fiber orientation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1788–1799, 2000  相似文献   

13.
The kinetics of deagglomeration in diluted suspensions of goethite nanopowder, as well as the rheology and morphology of the resulting suspensions, strongly depends on pH. At pH 3, nanopowder can be dispersed as separate nanoparticles, and the resulting suspension is Newtonian, with the viscosity only marginally higher than the viscosity of water. At pH between 5 and 12, nanoparticles tend to reaggregate and form weak aggregates/flocs. Morphology changes from a Newtonian suspension of primary nanoparticles to a non-Newtonian, shear-thinning suspension of large, porous, interconnected flocs with the yield stress reaching a maximum at an isoelectric point. The effect of pH on morphology and rheology is reversible, and as pH is reduced to 3, the suspension becomes Newtonian, with viscosity marginally higher than the viscosity of water. The rheological models based on DLVO theory do not allow prediction of the effect of pH on viscosity and yield stress, but the flow curves of goethite suspensions can be described by a fractal model with five adjustable parameters.  相似文献   

14.
Particle-level simulations are performed to study semidilute suspensions of monodispersed non-Brownian fibers in shear flow, with a Newtonian fluid medium. The incompressible three-dimensional Navier-Stokes equations are used to describe the motion of the medium, while fibers are modeled as chains of fiber segments, interacting with the fluid through viscous drag forces. The two-way coupling between the solids and the fluid phase is taken into account by enforcing momentum conservation. The model includes long-range and short-range hydrodynamic fiber-fiber interactions, as well as mechanical interactions. The simulations rendered the time-dependent fiber orientation distribution, whose time average was found to agree with experimental data in the literature. The viscosity and first normal stress difference was calculated from the orientation distribution using the slender body theory of Batchelor [J. Fluid Mech. 46, 813 (1971)], with corrections for the finite fiber aspect ratios. The viscosity was also obtained from direct computation of the shear stresses of the suspension for comparison. These two types of predictions compared well in the semidilute regime. At higher concentrations, however, a discrepancy was seen, most likely due to mechanical interactions, which are only accounted for in the direct computation method. The simulated viscosity determined directly from shear stresses was in fair agreement with experimental data found in the literature. The first normal stress difference was found to be proportional to the square of the volume concentration of fibers in the semidilute regime. As concentrations approached the concentrated regime, the first normal stress difference became proportional to volume concentration. It was also found that the coefficient of friction has a strong influence on the tendency for flocculation as well as the apparent viscosity of the suspension in the semidilute regime.  相似文献   

15.
两种联接链的季铵盐Gemini表面活性剂水溶液流变行为   总被引:3,自引:2,他引:3  
季铵盐Gemini表面活性剂C12-s-C12•2Br(s=2)水溶液在25 ℃,3~9 mmol•kg-1和10~40 mmol•kg-1两个浓度范围区受剪切速率γ影响不同,前者在γ=0~1875 s-1内均为牛顿型,后者在各自临界剪切速率γ*之后由牛顿型转变为膨胀型,且零剪切粘度η0随浓度c急剧增大,这是由于溶液中的线状胶团相互缠绕所致.当在联接链中增加乙氧基(C12-s-En-C12•2Br, s=2, n=1、2、3),由于单元分子几何形状发生明显变化,只生成球状胶团,使其在c=3~120 mmol•kg-1和γ=0~1 875 s-1范围内始终表现为牛顿型,η0仅随c和γ略为增大.降低温度有利于剪切力诱导流型转变,但若在一段温度范围内溶液始终保持牛顿型,温度对η0影响很小.  相似文献   

16.
17.
The shear stress σ, two components of birefringence, and extinction angle were measured for a concentrated polystyrene solution in step-shear deformation of magnitude of shear 0.3 ≤ γ ≤ 4.0. The stress-optical coefficient did not depend on either γ or time. The first and the second normal-stress differences v1 and v2 were evaluated with the use of the stress-optical law. Over a certain range of long times, σ could be factored as σ = γh(γ)G(t) and the quantity h(γ) agreed with the prediction of the Doi–Edwards theory based on the de Gennes tube model of entangled polymer chains. At short times the effect of γ on σ/γ was smaller than at long times. The relaxation spectrum became approximately independent of γ at the short-time end of the rubbery plateau region. The ratios v1/σ and v2/v1 were independent of time and were in quantitative agreement with those predicted by the Doi–Edwards theory: v1/σ was equal to γ, v2/v1 was negative, and |v2/v1| decreased with increasing γ.  相似文献   

18.
通过大幅振荡剪切(LAOS)流变学方法, 研究了NaCl浓度对Laponite悬浮体系的结构及非线性黏弹性的影响. 在线性黏弹性区, Laponite体系的储能模量G′随着NaCl浓度的增加而逐渐增大. 体系的非线性黏弹性用响应应力的Fourier变换三次谐波的相对振幅I3/1与Lissajous曲线的定量参数GM, GL, ηM和ηL描述. 当NaCl浓度较低时, I3/1随应变振幅γ0的增加而缓慢增加; 当NaCl浓度较高时, I3/1随γ0的增加迅速增大, 达到平台值. 不同NaCl浓度试样的GM和GL随γ0变化的曲线区别不大, 但ηM和ηL随γ0变化曲线在非线性区域出现峰值且区别较大. NaCl浓度越高, ηM和ηL出现峰值的γ0越小, 峰值越大. 结果表明, Laponite凝胶的非线性黏弹性与凝胶网络结构有关, 随着NaCl浓度的增加, 粒子间的静电相互作用距离缩短, 粒子间距减小, 形成了更紧密的网络结构. 但这种网络在较大的应变下很容易被破坏, 出现非线性黏弹性.  相似文献   

19.
The influence of nano‐scale particles on the viscoelastic properties of polymer suspensions is investigated. We have developed a simulation technique for the particle orientation and polymer conformation tensors to study various features of the suspensions. The nano‐particles are modeled as thin rigid oblate spheroid particles and the polymers as FENE‐P type viscoelastic and Newtonian fluid. Both interparticle and polymer‐particle interactions have been taken into account in our numerical computations. The nonlinear viscoelastic properties of nanocomposites of layered silicate particles in non‐Newtonian fluids are examined at the start‐up of shear flow and are interpreted using the model to examine the effects of model parameters as well as flow conditions on particle orientation, viscosity, and first normal stress difference of the suspensions. We have studied the microstructure of polymer‐clay nanocomposites using X‐ray diffraction (XRD) scattering and transmission electron microscopy (TEM). The rheology of these nanocomposites in step‐shear is shown to be fairly well predicted by the model. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2003–2011, 2010  相似文献   

20.
The theories available for the yield stress of magnetic suspensions imply that their transition from a quasi-elastic to a fluid behavior is related to the disruption of chainlike or bulk columnlike aggregates connecting opposite boundaries of a region containing a suspension. It is commonly assumed that aggregates are rigidly bonded to bounding walls. However, a slip of aggregates on the walls is frequently observed. In this work, the transition from an elastic shear strain of a magnetic suspension to its viscous flow due to the slip of aggregates on channel walls is theoretically studied. The value of the corresponding yield stress is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号