首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A post-column reagent (PCR) method for bromate analysis in drinking water with a method detection limit (MDL) and method reporting limit (MRL) of 0.1 and 0.5 microg/l, respectively, has been developed by the United States Environmental Protection Agency (EPA) for future publication as EPA Method 317.0. The PCR method provides comparable results to the EPA's Selective Anion Concentration (SAC) method used to support the laboratory analysis of Information Collection Rule (ICR) low-level bromate samples and offers a simple, rugged, direct injection method with potential to be utilized as a compliance monitoring technique for all inorganic Disinfectants/Disinfection By-Products (D/DBPs). It has superior sensitivity for bromate compared to EPA Method 300.1, which was promulgated as the compliance monitoring method for bromate under Stage 1 of the D/DBP rule. This paper addresses elimination of the chlorite interference that was previously reported in finished waters from public water systems (PWSs) that employ chlorine dioxide as the disinfectant. An evaluation of Method 317.0 for the analysis of bromate in commercial bottled waters is also reported.  相似文献   

2.
3.
The development of US Environmental Protection Agency (EPA) Method 317.0 provided a more sensitive, acceptable alternative to EPA Method 300.1 to be proposed as one of the recommended compliance monitoring methods for Stage II of the Disinfectants/Disinfection By-Products (DBP) Rule. This work was initiated to evaluate other postcolumn reagents (PCRs) that might be utilized to provide an additional, alternative method in order to augment compliance monitoring flexibility for inorganic oxyhalide DBP anions. Modifications of the method reported by Salhi and von Gunten, which included adjustment and optimization of flow-rates, reaction temperature, and delivery of the PCR, improved the method performance. Method 326.0 incorporates an acidic solution of potassium iodide containing catalytic amounts of molybdenum(VI) as the PCR and provides acceptable precision and accuracy for all analytes and a postcolumn bromate detection limit in reagent water of 0.17 microg/l.  相似文献   

4.
5.
In recent years several methods have been published by the United States Environmental Protection Agency (EPA) which specify bromate as a target analyte. The first of these was EPA Method 300.0. As technological improvements in ion chromatographic hardware have evolved and new detection techniques have been designed, method detection limits for bromate have been reduced and additional procedures have been written, including EPA Method 300.1, 321.8 and, most recently, EPA Method 317.0. An overview of the evolution of these bromate methods since 1989 is presented. The focus is specific to each of these respective procedures, highlighting method strengths, weaknesses, and addressing how these methods fit into EPA’s regulatory agenda. In addition, performance data are presented detailing the joint EPA/American Society for Testing and Materials multilaboratory validation of EPA Method 317.0 for disinfection by-product anions and low-level bromate.  相似文献   

6.
The International Agency for Research on Cancer determined that bromate is a potential human carcinogen, even at low micro/l levels in drinking water. Bromate is commonly produced from the ozonation of source water containing naturally occurring bromide. Traditionally, trace concentrations of bromate and other oxyhalides in environmental waters have been determined by anion exchange chromatography with an IonPac AS9-HC column using a carbonate eluent and suppressed conductivity detection, as described in EPA Method 300.1 B. However, a hydroxide eluent has lower suppressed background conductivity and lower noise compared to a carbonate eluent and this can reduce the detection limit and practical quantitation limit for bromate. In this paper, we examine the effect of using an electrolytically generated hydroxide eluent combined with a novel hydroxide-selective anion exchange column for the determination of disinfection byproduct anions and bromide in municipal and bottled drinking water samples. EPA Methods 300.1 B and 317.0 were used as test criteria to evaluate the new anion exchange column. The combination of a hydroxide eluent with a high capacity hydroxide-selective column allowed sub-microg/l detection limits for chlorite, bromate, chlorate, and bromide with a practical quantitation limit of 1 microg/l bromate using suppressed conductivity detection and 0.5 microg/l using postcolumn addition of o-dianisidine followed by visible detection. The linearity, method detection limits, robustness, and accuracy of the methods for spiked municipal and bottled water samples will be discussed.  相似文献   

7.
The US Environmental Protection Agency is developing regulations for various drinking water disinfection by-products (DBPs). This effort involves developing analytical methods for the DBPs formed as a result of different disinfection treatments and collecting occurrence data for these species. Ion chromatography is one method being used to analyze drinking water samples for the following inorganic DBPs: chlorite, chlorate and bromate. These anions, however, are difficult to separate from common interfering anions of chloride, carbonate and nitrate. A method is therefore presented by which tetraborate/boric acid is used to separate these anions. Method detection limits of the order of 10 micrograms/l, using conductivity and UV detection were obtained. Stability studies of chlorite showing the effectiveness of ethylenediamine as a preservative and summary data for an occurrence of nitrite, nitrate and the DBP precursor bromide are presented.  相似文献   

8.
周益奇  王子健  许宜平  马梅 《色谱》2007,25(3):430-434
水中的碘酸根、亚氯酸根和溴酸根是重要的消毒副产物,主要通过大体积浓缩后直接电导检测,或通过柱前或柱后化学反应将目标物转化成容易检测的物质后检测。本方法采用大体积进样柱后衍生紫外检测的分析方法,通过条件优化获得了较高的灵敏度和信噪比。利用一套自动分析系统,可以满足饮用水中痕量碘酸根、亚氯酸根、溴酸根的同时监测。碘酸根、亚氯酸根和溴酸根的检出限分别为0.5,0.4,0.1 μg/L。对于不同的加标样品,碘酸根、亚氯酸根和溴酸根的回收率分别为70.8%~98.0%,92.4%~100%和93.2%~104.1%。该方法应用于北京市场上的瓶装饮用水分析,结果显示瓶装纯净水中的碘酸根、亚氯酸根、溴酸根浓度均低于检出限,而瓶装矿泉水中碘酸根、溴酸根的最高含量分别达到9.4 μg/L和78.4 μg/L。  相似文献   

9.
微波浓缩-离子法测定饮用水中的痕量溴酸根和高氯酸根   总被引:26,自引:0,他引:26  
刘勇建  牟世芬  杜兵  林爱武 《色谱》2002,20(2):129-132
 建立了一种简便的用于浓缩水中痕量BrO3 -和ClO4 -的样品前处理方法。水样经OnGuardAg柱过滤 ,用微波炉在 15min内可浓缩 2 0倍 ,所测离子的回收率均高于 90 %。又采用IonPacAS16型亲水性柱 ,用 15 0 μL定量环 ,以NaOH为流动相、梯度淋洗方式 ,在 35min内测定了包括BrO3 -和ClO4 -在内的 8种离子。BrO3 -和ClO4 -的检测限分别为 0 10 μg/L和 0 2 0 μg/L。该方法在实际应用中有较大的参考价值。  相似文献   

10.
建立一种检测饮用水中痕量溴酸盐的离子色谱方法。利用On GuardⅡAg柱过滤去除水中氯离子,直接进样,电导检测器检测。该方法避免了氯离子对溴酸盐的干扰,测定水质溴酸盐的灵敏度和准确度均有很大提高。溴酸盐的检出限为0.005 mg/L,测定结果的相对标准偏差为7.56%(n=7),加标回收率为92.0%~110.0%。该方法操作简便快速、准确度高,适合于饮用水中痕量溴酸盐的测定。  相似文献   

11.
 The ion-chromatographic method for trace analysis of bromate and bromide presented in this paper is based on coating of reversed phase (RP) material with an ionogenic agent, tetrakisdecylammonium bromide, to obtain a pseudo ion-exchange column. The analysis is carried out with usual HPLC pump and UV-detection near 200 nm. Some commercially available RP materials were tested for the coating procedure. The differences between the reversed phases are not significant. All HETP values are calculated between 0.02 and 0.14 mm. The calibration, the sensitivity of the method and the long-time stability of the coated column were tested with one selected RP material. It is shown that the simultaneous trace analysis of bromate and bromide in surface and drinking waters with chloride concentrations up to 50 mg/L is possible without any clean-up on Ag precolumns. A comparison of performance data with a determination method for bromate and bromide employing a commercially available equipment demonstrates the efficiency of the new technique. Received: 23 February 1996/Received: 10 May 1996/Accepted: 14 May 1996  相似文献   

12.
 The ion-chromatographic method for trace analysis of bromate and bromide presented in this paper is based on coating of reversed phase (RP) material with an ionogenic agent, tetrakisdecylammonium bromide, to obtain a pseudo ion-exchange column. The analysis is carried out with usual HPLC pump and UV-detection near 200 nm. Some commercially available RP materials were tested for the coating procedure. The differences between the reversed phases are not significant. All HETP values are calculated between 0.02 and 0.14 mm. The calibration, the sensitivity of the method and the long-time stability of the coated column were tested with one selected RP material. It is shown that the simultaneous trace analysis of bromate and bromide in surface and drinking waters with chloride concentrations up to 50 mg/L is possible without any clean-up on Ag precolumns. A comparison of performance data with a determination method for bromate and bromide employing a commercially available equipment demonstrates the efficiency of the new technique. Received: 23 February 1996/Received: 10 May 1996/Accepted: 14 May 1996  相似文献   

13.
刘晶  何青青  杨丽莉  胡恩宇  王美飞 《色谱》2015,33(10):1110-1114
建立了一种测定水中痕量及超痕量溴酸盐的在线富集大体积进样离子色谱法。采用实验室常备的柱容量较高的Dionex IonPac AG23保护柱作为浓缩柱,连接在定量环处富集溴酸盐。淋洗液自动发生装置在线生成高纯度氢氧化钾淋洗液进行梯度洗脱,抑制电导检测。实验结果表明:溴酸盐质量浓度范围在0.05~51.2 μg/L之间时线性关系良好,相关系数r≥0.9995,方法检出限为0.01 μg/L。与常规进样相比,进样量可高达5 mL,浓缩因子约为240倍。本方法成功应用于市售纯净水中溴酸盐的测定,2个加标水平的回收率在90%~100%之间,RSD(n=6)为2.1%~6.4%。该方法无需前处理,操作简单,准确度和精密度良好。通过大体积进样实现高倍富集,适用于痕量及超痕量溴酸盐的分析。  相似文献   

14.
Wang J  Serra B  Ly SY  Lu J  Pingarron JM 《Talanta》2001,54(1):147-151
Adsorptive-catalytic stripping voltammetry is commonly used for monitoring trace metals. This study reverses the scheme by developing a sensitive procedure for measuring the catalyst. The catalytic action of bromate upon the cathodic response of the adsorbed molybdenum-3-methoxy-4-hydroxymandelic acid (VMA) complex has been exploited for measuring bromate down to the micromolar concentration level. Experimental variables affecting the response, including the metal and ligand concentrations or the accumulation time and potential, were characterized and optimized to yield a highly linear response (up to at least 1x10(-4) mol l(-1)) and good precision (RSD of 3.5%; n=10; 2x10(-6) mol l(-1) bromate). Analogous adsorptive-catalytic stripping protocols may be utilized for the voltammetric detection of other catalysts.  相似文献   

15.
Honglan Shi  Craig Adams 《Talanta》2009,79(2):523-183
Haloacetic acids (HAAs) and bromate are toxic water disinfection by-products (DBPs) that the U.S. Environmental Protection Agency has regulated in drinking water. Iodoacetic acids (IAAs) are the emerging DBPs that have been recently found in disinfected drinking waters with higher toxicity than their corresponding chloro- and bromo-acetic acids. This study has developed a new rapid and sensitive method for simultaneous analysis of six brominated and four iodinated acetic acids, bromate, iodate, bromide, and iodide using ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Mono-, di- and tri-chloroacetic acids are not detected by this method because the sensitivity of ICP-MS analysis for chlorine is poor. Following IC separation, an Elan DRC-e ICP-MS was used for detection, with quantitation utilizing m/z of 79, 127, and 74 amu for Br, I, and Ge (optional internal standard) species, respectively. Although the primary method used was an external standard procedure, an internal standard method approach is discussed herein as well. Calibration and validation were done in a variety of natural and disinfection-treated water samples. The method detection limits (MDLs) in natural water ranged from 0.33 to 0.72 μg L−1 for iodine species, and from 1.36 to 3.28 μg L−1 for bromine species. Spiked recoveries were between 67% and 123%, while relative standard deviations ranged from 0.2% to 12.8% for replicate samples. This method was applied to detect the bromine and iodine species in drinking water, groundwater, surface water, and swimming pool water.  相似文献   

16.
A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min.The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.  相似文献   

17.
This study reports a sensitive kinetic spectrophotometric method for the determination of trace amounts of thiocyanate. In acidic solution, Methylene Blue (MB) is oxidized by bromate to form a colorless compound. The reaction is accelerated by trace amounts of thiocyanate and can be followed by measuring the absorbance at 664 nm. The absorbance of the reaction decreased with an increase in the reaction time. Under the optimum experimental conditions (0.56 M of sulfuric acid, 3.9 x 10(-5) M of MB, 3.0 x 10(-3) M of bromate, 180 s, 25 degrees C), thiocyanate can be determined in the range 5.0 - 180 ng/ml. The relative standard deviations (n = 8) are 2.81 and 1.43% for 10.0 and 150 ng/ml thiocyanate, respectively. The detection limit of this method is (3sigma) 3.8 ng/ml. This method was successfully applied to the determination of thiocyanate in real samples.  相似文献   

18.
In July 1997, the US Environmental Protection Agency (EPA) began sampling and analyzing drinking water matrices from US municipalities serving populations greater than 100 000 for low-level bromate (>0.20 μg/l) in support of the Information Collection Rule (ICR) using the selective anion concentration (SAC) method. In September 1997, EPA published Method 300.1 which lowered the Method 300.0 bromate method detection limit (MDL) from 20.0 to 1.4 μg/l. This paper describes the research conducted at the EPA’s Technical Support Center laboratory investigating a single post-column reagent, o-dianisidine (ODA), which has been successfully coupled to EPA Method 300.1 to extend the MDL for bromate. Initial studies indicate that this method offers a MDL which approaches the EPA’s SAC method with the added benefit of increased specificity, shortened analysis time and reduced sample preparation. The method provides excellent ruggedness and acceptable precision and accuracy with a bromate MDL in reagent water of 0.1 μg/l, and a method reporting limit of 0.50 μg/l.  相似文献   

19.
简化柱切换技术在高浓度基体存在下测定痕量离子的研究   总被引:1,自引:0,他引:1  
黄源  牟世芬 《色谱》2000,18(2):95-99
 建立了适用于高浓度基体存在下测定痕量离子的简化柱切换技术。通过分析淋洗液浓度对待测离子色谱峰保留时间的影响 ,指出可使用高浓度淋洗液抑制色谱峰漂移 ,并通过实验案例提出了针对不同样品采取的不同策略。  相似文献   

20.
示波电位—动力学分析法测定环境水样中的酚   总被引:6,自引:1,他引:6  
吴庆生  丁亚平 《分析化学》1995,23(6):696-698
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号